论文部分内容阅读
在海岛开发建设过程中,电渗析小型海水淡化技术具有较强的优势。但是该技术存在的出水硼含量高、能耗大的问题还需要进一步解决。针对以上问题,本文首先以实验室配置模拟海水,提出浓水分段外排电渗析的方法,将电渗析过程中的浓水分一至五段外排,考察该过程中溶液中的盐和硼的去除效果、pH值、电阻、电流效率以及水迁移量的变化情况;并针对电渗析的时长、pH值、离子交换膜的品种等影响电渗析海水淡化硼去除效果的因素进行操作工艺优化,提高电渗析海水淡化过程中硼的去除效果;并且组建了一套便携式小型海水淡化设备进行现场小试。研究发现:1.采用浓水分段外排电渗析方法时,模拟海水脱盐速率随着浓水分段外排数从一至五段增加而增加;含盐量降至《生活饮用水水质标准》要求的500mg/L需要的时间逐渐缩短;离子的电迁移系数λ基本保持不变,离子的浓差扩散系数μ同比有所降低;水的电渗透系数φ基本保持不变,水的浓差扩散系数ρ逐渐减小,淡室中因为浓淡室之间的浓差导致的水损失量也随分段数增加而减小。2.采用浓水分段外排电渗析方法时,对模拟海水中硼的去除效果最好的四段浓水分段外排法,可以在180min的电渗析过程内将模拟海水中硼的浓度从5mg/L降至0.461mg/L,达到了《饮用水水质标准》的要求。3.采用浓水分段外排电渗析方法时,淡室的pH值呈上升趋势,但能够满足《饮用水水质标准》pH值的要求;同时,膜堆电阻随浓水分段外排段数增加而逐渐减缓,膜堆的电流效率提升明显,平均效率最高可达90.4%;膜堆能耗逐渐降低,四段法浓水分段外排电渗析的能耗最低。4.对影响电渗析海水淡化硼去除效果的因素进行操作工艺优化。结果表明,当电渗析时长为210min时,淡室中硼的浓度最低;当淡室中的pH维持在8.5时,硼的去除效果最好;当电渗析过程进行至120min时,将淡室的pH值维持在8.5,可以将实验结束时淡室中的硼浓度从5mg/L降至0.3041mg/L,实现了电渗析膜堆最高除硼效率;日本Katsujiro Iwai离子交换膜在离子迁移速率、电迁移系数、浓差扩散系数、以及水的电渗透系数、浓差渗透系数以及除硼效果上表现优良,但其价格昂贵,为降低成本,本文组建的便携式小型海水淡化电渗析设备采用性能稍微逊色的合肥科佳4号离子交换膜。5.根据实验室研究结果,组建了便携式小型海水淡化电渗析设备,在某海岛进行现场实际海水淡化除硼验证小试试验,考察海水淡化脱盐、除硼的效果。结果表明,便携式小型海水淡化电渗析设备对实际海水淡化处理出水可以达到《生活饮用水水质标准》对含盐量和硼的指标要求,但是对硼的去除效果还不够稳定。