论文部分内容阅读
随着材料加工技术的不断进步,器件中材料的尺寸不断下降。当材料尺寸减小到纳米尺度,材料的物理化学性质将发生明显变化。相变作为材料的一种重要特性,受到人们的广泛关注。目前,人们已认识到纳米材料的相变点将随着尺寸的减小而降低,但关于纳米材料的相变过程以及相变相关的性质变化规律的研究工作尚不完善,而这也成为了制约纳米材料应用的重要因素。本论文利用球差校正透射电子显微镜(TEM)、球差校正扫描透射电子显微镜(STEM)及原位加热样品杆系统等设备,对Ag2S在纳米尺度下的相变行为及相变引起的形状变化规律进行了研究。具体研究内容与成果如下: 1.首次直接证实了快离子导体β-Ag2S中的Ag原子在6(b),12(d)和24(h)三类间隙均有分布。本文首先利用湿化学法合成了高质量的Ag2S纳米颗粒,随后利用球差校正STEM,表征了α-Ag2S和β-Ag2S的相界面。进而基于α-Ag2S结构及两相共格关系,确定了β-Ag2S中S原子位置。之后,通过对比[100]β、[(1)10]β、[210]β、和[11(1)]β等β相低指数带轴的球差校正HAADF像与QSTEM软件模拟的对应带轴下不同间隙占位组合的HAADF像,对Ag占位进行了定性分析。结果证实β-Ag2S的Ag原子在6(b),12(d)和24(h)间隙均有分布。最后,考察了温度对β-Ag2S中Ag原子占位的影响,结果表明在实验允许的温度范围内(低于300℃),Ag原子占位未发生明显变化。 2.首次报道了一种具有形状记忆的半导体,首次发现了一种本征双程形状记忆效应,并实现了对其形状的准调控。分析Ag2S纳米线截面样品、不受约束的Ag2S纳米线样品及Ag2S多晶截面样品在快速升降温相变循环中高温相与低温相不同变体的对应关系,发现:Ag2S在单斜-BCC(有序-无序)快速升降温相变循环中,通过记住低温相最短的轴实现了形状记忆。分析研究表明,这一现象是由Ag2S高温相中进行较为缓慢的Ag均匀化过程所主导的。通过改变高温相的保温时间,实现了对最短轴位置的准调控从而实现形状准调控。 3.直观揭示了曲面对表面相变的促进作用。通过对纳米颗粒表面相变行为的定量表征,发现Ag2S纳米颗粒亦发生预相变,然而无序相的厚度偏离传统理解的与温度呈对数关系。且Ag2S纳米颗粒的相关长度明显高于块体表面。对比不同尺寸Ag2S纳米颗粒的相同指数表面的预相变行为,发现较小纳米颗粒的相变起始温度低于较大纳米颗粒。且在相同温度下,较小纳米颗粒表面高温相的厚度始终厚于较大纳米颗粒。考虑到表面和形状的影响,从相变自发进行的吉布斯自由能平衡关系出发,建立了纳米颗粒相变过程的热力学模型。基于该模型得到了和实验结果一致的结论。最后,通过对纳米线的升温无序化相变的表征及对应模型分析,研究了非均匀形貌样品中的相变过程。由于纳米线尖端等效曲率较大,纳米线的相变往往从尖端开始,该结果与纳米颗粒中的实验结论相一致。