【摘 要】
:
目前自动驾驶是当今科技发展重要的一环。智能车通过环境感知系统获取周边环境信息,在构建的环境地图上利用规划模块得到智能车可行驶的轨迹,在通过控制系统对轨迹点进行实时跟踪,从而达到汽车的自主行驶。本文在周边环境已知的情况下,对局部路径规划与轨迹跟踪控制问题展开研究,具体研究内容如下:(1)研究了智能车辆在园区、港口、停车场等复杂环境和城市结构化道路环境下的局部路径规划方法。并在复杂环境下使用RRT和A
论文部分内容阅读
目前自动驾驶是当今科技发展重要的一环。智能车通过环境感知系统获取周边环境信息,在构建的环境地图上利用规划模块得到智能车可行驶的轨迹,在通过控制系统对轨迹点进行实时跟踪,从而达到汽车的自主行驶。本文在周边环境已知的情况下,对局部路径规划与轨迹跟踪控制问题展开研究,具体研究内容如下:(1)研究了智能车辆在园区、港口、停车场等复杂环境和城市结构化道路环境下的局部路径规划方法。并在复杂环境下使用RRT和Astar算法进行路径搜索,RRT算法搜索路径在没有约束条件下曲折蜿蜒,只是一条连接起始点的路径,不是最优的,且撒点随机性导致搜索盲目,因而路径求解时间较长,但RRT算法具有完备性,当存在一条连接起始点的路径时,RRT算法一定可以求解。Astar算法具有启发性,它在栅格化的环境中,可以快速得到一条路径,但Astar只能朝周边四个或者八个栅格移动,不能加入车辆运动学约束,导致路径不利于车辆跟踪。为了让RRT(快速搜索随机树)算法能够在智能车辆领域广泛应用,解决RRT算法的搜索效率低、最近邻搜索函数不合理等问题,本文提出了一种基于Astar算法改进的RRT算法。利用Astar算法在低分辨率的栅格地图中生成最短路径构造引导域,解决RRT撒点的随机性,同时在RRT算法的最近邻搜索函数中考虑车辆运动学约束,使规划路径满足车辆正常跟踪,并在新节点生成时重新选择父节点和重布线,使搜索路径趋近最优。通过仿真实验,验证了该算法的有效性和实用性。(2)针对三次B样条曲率连续的特点,使用该方法对路径点进行平滑处理,得到最终的可执行路径,并通过仿真验证了平滑算法的实用性。因改进的RRT只是对静态障碍物避障具有有效性,而障碍环境中一般都存在动态障碍物,因此需进行动态避障。利用五次多项式在ST图(规划轨迹纵向位移与时间的二维关系图)中进行ST曲线构建,其中障碍物在未来时刻所处的位置在轨迹上的投影作为ST图的障碍区域,以目标车辆当前车速匀速走完和最大加速度走完规划轨迹所用时间为基准,创建一组候选速度规划目标时刻点,由目标时刻点可以规划出一系列ST曲线,利用评价函数选取最优ST曲线。最后设计了在城市结构化道路环境下的轨迹规划仿真实验。(3)本文设计了基于MPC的轨迹跟踪控制器。将车辆位置、纵侧向速度、横摆角和横摆角速度作为控制器状态量。控制量为前轮转角。同时还设置了控制量、控制增量等一系列约束保证控制器的稳定性。最后在不同速度的双移线工况下进行了仿真。为了验证规划路径的有效性和控制器的稳定性,本文通过Car Sim与Matlab/Simulink搭建的联合仿真平台对规划路径和控制算法进行仿真验证。结果表明,本文提出的规划算法和轨迹跟踪控制算法具有很强的实用性。
其他文献
齿轮作为工业生产中重要的传动零部件,广泛应用与汽车、船舶、航空航天等领域中。实际工作当中齿轮受到法相正应力与周向切应力复合作用。所以实际服役的齿轮寿命要比最初的设计寿命低,这就会给生产生活带来重大隐患。国内外学者已经对滚动接触疲劳的失效机理做了大量研究,但疲劳损伤是受复杂应力作用产生的,有许多现象还需进一步阐述和验证。目前对齿轮滚动接触疲劳的研究主要集中在硬齿面疲劳损伤上的研究,但对软齿面疲劳损伤
蓄热式工业炉作为对钢锭或钢坯进行锻前加热以及金属热处理的重要设备,在机械领域中扮演着举足轻重的角色。但其具有结构复杂,零部件数目众多,类型繁杂的特点。传统产品设计模式需要对核心零部件进行大量繁琐的计算校核、各类零件三维模型的反复重建及装配、工程图的修改或重新绘制,使得产品设计周期长,增加了企业设计成本,限制了产品快速响应市场的需求。为了提高蓄热式工业炉设计效率,降低设计过程中重复繁琐的工作量,实现
Cu-Cr-Zr系合金因其高强高导性能而被广泛应用于电子、电力、航空、航天、电机制造、焊接工具等领域。该系合金属于析出强化型合金,通过固溶时效处理可以析出弥散分布于合金中的析出相,其析出相对合金综合性能有较大的影响,但由于测试手段、合金元素含量较少等限制,合金中析出的金属间化合物的成分结构等仍存在分歧,且缺乏相关的性质研究。另外,由于稀土元素(Rare Earth,RE)具有净化基体、改善组织的作
由于石油资源有限且价格不断上涨和环境污染等问题日益严峻,纯电动汽车因其具有零污染、零排放、噪声小等特点开始走进大众的视野。整车控制器是纯电动汽车的大脑,它指挥着各级下层控制器的执行工作。驱动控制策略是整车控制策略中最为核心的内容之一,与汽车的动力性、驾驶性等各项性能密切相关,所以要想达到更好的整车性能,制定合理可行的驱动控制策略显得尤为重要。在“人-车-环境”构成的复杂闭环系统中,驾驶人行为对于整
智能车的发展有助于提高道路交通安全,目前面向于智能车已开发出众多高级驾驶辅助系统,并且得到了广泛应用,但这些功能仅适用于简单工况。随着城市化进程不断推进,城市汽车保有量和快速公路里程也不断增加。快速公路中车流量大、车辆驾驶员的行为差异等因素导致快速公路匝道口的行驶环境多变,容易引发交通事故。面对这些复杂环境,目前的高级驾驶辅助系统可能不再适用,这就对智能车提出了更高要求。本文主要针对城市快速公路匝
随着能源行业的不断发展,未来能源的供给及消费形态正在发生变化,对电、热、气等能源统筹规划的重要性凸显。综合能源系统是近年来的研究热点,旨在实现电、热、气等多能源统一规划与优化调度,达到促进可再生能源消纳,提高综合能源利用效率,确保系统高效稳定运行的目的。天然气储气库生产运行期间具有能耗总量高、能耗品种多、多能耦合度高的特点,是天然气的存储环节,同时也是以电能为主的能源消费终端,是综合能源系统的理想
本文以由自主研发的亚稳β钛合金Ti-5Al-5Mo-5V-3Cr-1Fe(Ti-55531Fe)合金棒材作为研究对象,利用Gleeble-3800热模拟试验机对其进行热压缩试验。综合运用XRD、EBSD、ECC、EDS和硬度测试等多种测试技术对收获态样品、热处理样品以及热压缩试验样品的微观组织和性能进行了细致地表征,系统地研究了双相区热锻Ti-55531Fe合金的微观组织形成原因、冷却速率对其微观
以硒化铋(Bi2Se3)为代表的拓扑绝缘体(Topological insulators)是一种具有特殊电子状态的新型半导体材料,最近几年吸引了研究者的广泛关注。目前关于硒化铋材料的研究还主要集中在薄膜生长后的物理性质方面,如生长形状、载流子迁移率以及电子态等,而将薄膜材料应用于光电子器件的研究还处于发展阶段,也是目前的研究热点之一。本论文通过在不同目标衬底上生长了硒化铋薄膜,并制备出具有宽波段探
人体精神疲劳作为一种普遍存在的精神状态却极易被人们忽略,从而对人们的日常生活、工作造成一定程度的负面影响。为了减少人体精神疲劳带来的危害,找到合适的疲劳检测方法已成为该领域研究的热门,基于人体生理参数的疲劳检测方法已被证明是可行的,但由于脑电图、心电图等信号的采集装置复杂,难以进行实时监测,因此,选取另外一种信号进行疲劳检测是很有必要的。为了满足人体精神疲劳实时监控的新需求,本文设计了一种基于脉搏
随着集成电路芯片向小型化、多功能化的发展,对键合丝这一电子封装关键材料提出更高的要求。铜键合丝由于具有成本低、导电导热性较高等优点,已成为替代金键合丝的首选材料,在电子封装领域具有极大的应用前景。然而,铜丝与基板焊盘(一般为Al、Cu、Au)键合后,仍存在一些问题,如键合界面稳定性较差,易脱落而导致键合失效,因而其键合界面可靠性问题已成为制约铜丝广泛应用的因素之一。目前主要通过在纯铜丝中添加微量合