论文部分内容阅读
振动是一种带有普遍意义的物质运动形式,是系统的主要动力学性质之一。微分方程的振动理论在控制工程、机械振动、力学等领域都有广泛的应用。由G. Sturm建立的二阶线性微分方程解的零点分布的比较定理和分离定理,为微分方程振动性理论的研究奠定了基础。一个半世纪以来,微分方程的振动理论得到了迅猛的发展,有大批数学工作者从事这方面的研究,取得了一系列丰硕的研究成果。而时滞(偏)微分方程和脉冲(偏)微分方程振动理论是微分方程定性理论研究的一个重要组成部分.时滞和脉冲的存在使系统能更精确地反映事物的变化规律,同时也使得系统的振动性分析变得更加困难。时滞脉冲(偏)微分方程的振动性研究是近几十年来微分方程领域兴起的一个新的热点,并且受到人们的日益关注。另一方面,分数阶微积分理论(包含分数阶微分方程、分数阶积分方程、分数阶微分积分方程以及数学物理方程中的一些特殊的函数)作为一种全新的数学研究分支,在流体力学、多孔结构、扩散系统、动力系统的控制理论等领域都有重要的应用。由于分数阶微分方程在很多方面的理论研究才刚刚起步,如关于分数阶微分方程的振动理论尚很不完善。本文主要研究了非线性时滞脉冲偏微分方程及方程组解的振动性质,以及分数阶微分方程解的振动性及分数阶偏微分方程解的强迫振动性,推广并改进了文献中的相关结果。主要内容如下:第一章为综述,简要回顾了时滞脉冲偏微分方程(组)和分数阶常(偏)微分方程等的振动理论的研究背景和发展状况,同时介绍了本文的主要工作。第二章研究了非线性脉冲时滞偏微分方程及方程组解的振动性质,利用推广的Riccati变换,通过积分平均值方法,将含脉冲的时滞偏微分方程及方程组的振动性问题转化为含脉冲的时滞常微分不等式不存在最终正解或最终负解的问题,得到了方程及方程组的解产生振动的充分条件,建立了方程振动的一些新的准则。第三章通过引入一类H(t,s)型函数,利用推广的Riccati变换和辅助函数,结合积分平均值方法和Holder不等式,讨论了带阻尼项的脉冲时滞偏微分方程解的振动性质,得到了相关条件下解产生振动一些新的准则,推广并改进了已有的结果。第四章先介绍了与分数阶微分方程有关的一些概念,利用分数阶微积分的特点和性质,研究了一类分数阶常微分方程解振动性质及一类分数阶偏微分方程解的强迫振动性质,得到了方程的解振动及强迫振动的充分条件,这些结论可以看做是分数阶微分方程振动性研究新的补充。第五章对本文的研究内容和主要结果进行了归纳和总结,并对今后的研究工作进行了展望。