论文部分内容阅读
癌症是目前困扰人类健康、威胁人类生命的重大疾病之一。传统的手术切除、放疗、化疗和最新的免疫疗法已被用于癌症治疗,提高了病人的五年存活率,但由于不可避免的毒副反应使得疗效还与病人对于生命健康的期望相差甚远。NF-κB是一种序列特异性DNA结合型转录因子,通过与细胞核内DNA靶点结合,调控靶基因的表达,从而参与炎症反应、免疫应答以及细胞生长、分裂和凋亡等多种生理病理过程。NF-κB在各种癌症中过度活化,是抗肿瘤药物筛选和癌症治疗的优良靶点。由于 NF-κB 是一把“双刃剑”,传统的NF-κB活性抑制剂因其显著的毒副作用而未能成为临床药物。抑制从来不是解决问题的好办法,应采用因势利导的策略,创制新的肿瘤治疗技术。本研究发展了三种肿瘤基因治疗新技术,并探索了其生物医学研究领域的应用价值,主要研究成果包括以下:
1. 人肝癌细胞中NF-κB结合靶点和靶基因的鉴定及其应用
研究发现,过度活化的NF-κB与肝炎和肝细胞癌(HCC)的发生密切相关,但其完整而精确的分子途径和机制目前还不清楚。本研究使用ChIP-seq和RNA-seq高通量测序技术,在TNFα诱导的人HCC细胞系HepG2细胞中共计鉴定出699个NF-κB直接靶基因(direct target gene, DTG),包括399个激活基因和300个抑制基因。其中,216个基因(包括126个激活基因和90个抑制基因)是目前已经鉴定出的HCC基因标志物。比较TNFα诱导的HepG2细胞、LPS诱导的THP-1细胞和TNFα诱导的HeLa细胞中NF-κB靶基因数目,仅有24–46个NF-κB靶基因由两种细胞系共有,表明本研究鉴定出的NF-κB DTG具有HCC细胞特异性。基因功能注释分析表明,HepG2细胞中的NF-κB DTG主要富集在经典的NF-κB生物学过程,如免疫系统过程、压力反应、刺激反应、防御反应和细胞死亡,并且涉及MAPK、TNF、TGF-β、趋化因子、NF-κB和Toll样受体KEGG信号通路。部分NF-κB DTG也与丙型肝炎和乙型肝炎病毒密切相关。此外, 82个NF-κB DTG编码的分泌蛋白是目前临床上已经使用的HCC生物标志物,如CCL2和DKK1。最后,通过ChIP-qPCR和RT-qPCR实验证实,NFKB1、NFKBIA、CCL2、IL1A、IL1B、PTX3、NUDT7、EFNA5、ID4、GPC6、KLF15、DKK1、OAZ2和IGFBP3这14个基因是TNFα诱导的HepG2细胞中NF-κB DTG。这些结果为进一步研究NF-κB相关的分子机制和HCC生物标志物诊疗技术的发展提供了有价值的基因信息。
2. NF-κB激活的肿瘤细胞特异性基因疗法及其应用研究
转录因子 NF-κB 在各种肿瘤细胞/组织中过度活化,已经成为抗肿瘤药物研发和肿瘤治疗的优良靶点。正因如此,过去几十年发展了无数的NF-κB活性抑制剂,然而由于
不可避免的毒副反应,没有一例抑制剂成为临床使用的药物。本研究中,利用NF-κB在肿瘤细胞中高度活化的生物学特性,发展了一种肿瘤细胞特异性基因疗法,即NF-κB激活的基因表达(NF-κB-activated gene expression, Nage)载体用于癌症治疗。Nage载体通过将NF-κB诱骗子序列(decoy)与最小启动子序列(minimal promoter)融合构成NF-κB特异性启动子(decoy minimal promoter, DMP),DMP与肿瘤细胞内高表达的NF-κB结合,从而激活下游效应基因的表达。本研究首先使用Western-blotting方法验证了NF-κB p65蛋白在肿瘤细胞中特异性表达。随后以绿色荧光蛋白ZsGreen作为效应基因,证实Nage载体可在肿瘤细胞中特异性表达效应基因,产生绿色荧光,而在正常细胞中不表达效应基因。随后,以 CRISPR/Cas9 作为效应基因,在靶向端粒重复序列的 sgRNA (TsgRNA)的引导下,Nage载体特异性地诱导多种肿瘤细胞死亡,包括HepG2、HeLa、PANC-1、MDA-MB-453、A549、HT-29、SKOV-3、Hepa1-6和RAW264.7,而对正常细胞293T、MRC-5和HL7702不产生影响。最后,将表达Cas9-TsgRNA的Nage载体包装进腺相关病毒(adeno-associated virus, AAV)中,构建肿瘤基因治疗载体AAV-Nage,通过静脉注射给药途径注入小鼠体内,显著地抑制小鼠体内肿瘤的生长。本研究发展的肿瘤细胞特异性基因疗法Nage载体为抗肿瘤药物研发提供了一种新思路。
3. 端粒酶激活的肿瘤基因疗法及其应用研究
癌症是由一系列表观基因突变引起的,以多种复杂形式存在的难以预防和治疗的疾病。端粒酶是真核细胞中负责端粒延长的一种RNA聚合酶。研究发现,端粒酶的活性在大多数正常细胞中被程序性关闭,而在90%的肿瘤细胞中被重新激活,使其成为癌症治疗中的重要靶点。目前,已开发出多种端粒酶活性抑制剂用于治疗癌症,但由于不可避免的毒副反应均已失败告终。本研究中,利用肿瘤细胞中端粒酶的活性发展了一种名为端粒酶激活的基因表达(telomerase-activated gene expression, Tage)系统用于治疗癌症。Tage系统由一段携带端粒酶可识别的3 粘性末端效应基因表达载体、表达dCas9-VP64 人工转录因子的表达载体和靶向端粒重复序列的 sgRNA(TsgRNA)组成。以CRISPR/Cas9作为效应基因,Tage系统有效地杀灭多种肿瘤细胞,包括HepG2、HeLa、PANC-1、MDA-MB-453、A549、HT-29、SKOV-3、Hepa1-6和RAW264.7,但对正常细胞293T、MRC-5、HL7702和骨髓间充质干细胞(BMSC)不产生影响。更重要的是,酵母同宗接合切换内切酶(homothallic switching endonuclease, HO)切割产生的4碱基3? 粘性末端可被细胞中端粒酶识别并延伸,为Tage系统体内应用奠定基础。以腺相关病毒(adeno-associated virus, AAV)作为基因载体,实现了Tage系统体内安全有效治疗肿瘤的目的。荷载Tage系统的AAV经静脉注射给药,显著地抑制小鼠体内肿瘤的生长,并且没有观察到明显的毒副反应。
4. 肿瘤干细胞基因治疗载体的构建及其应用研究
癌症由不同分化等级和致瘤潜力的肿瘤细胞构成,是一种高度异质性、难以预防和治疗的疾病。癌干细胞或肿瘤干细胞(cancer stem cell, CSC)是具有自我更新、多能分化和无限增殖潜能的肿瘤细胞亚群,对维持肿瘤细胞异质性和致瘤性起关键作用。CSC可抵抗常规抗癌药物,并在肿瘤转移和复发中发挥重要作用,使得抗肿瘤药物研发面临巨大挑战。本研究中,使用前期发展的两种肿瘤细胞特异性基因疗法,端粒酶激活的基因表达(Tage)系统和NF-κB激活的基因表达(Nage)载体24 h内有效地杀灭旺盛分裂的肿瘤细胞,残存细胞具有CSC自我更新增殖特性。qPCR检测发现,涉及上皮/间充质细胞转换、Wnt信号通路、细胞间粘附以及干细胞标志基因VIM、TWIST、p53、p16INK4α、p21、CD24、CD326、DLL4、JAG1、Notch1、MUC1、DACH1、CD133、CD44、ATXN1、BMP7、CXCR4、GATA3、JAK2、KLF4、LIN28a、LIN28b、MYCN、NANOG和SOX2,在残存肿瘤细胞中均高表达,表明Tage系统和Nage载体可在24 h内有效分离得到CSC。研究发现,NF-κB 不仅在各种肿瘤细胞中高度活化,在 CSC 中也显示出高活性,使其有望成为针对CSC的肿瘤治疗靶点。将前期发展的新型NF-κB活性抑制剂,即NF-κB特异性启动子DMP调控的靶向RelA的miR533包装进腺相关病毒(AAV)中,构成肿瘤干细胞基因治疗载体AAV-miR533。AAV-miR533有效地杀灭HepG2 CSC,感染病毒20 d后的CSC仍没有再生长增殖迹象。本研究为分离CSC和开发针对CSC的抗肿瘤药物提供了新方法。
总之,本研究通过联合运用高通量测序技术、生物信息学技术和传统的分子生物学技术,鉴定出了肝癌细胞中NF-κB的结合靶点和靶基因,发展了三种肿瘤细胞基因治疗新技术—NF-κB激活的基因表达(Nage)载体、端粒酶激活的基因表达(Tage)系统和肿瘤干细胞基因治疗载体,这些基因技术在肿瘤基因治疗领域具有重要的应用价值。
1. 人肝癌细胞中NF-κB结合靶点和靶基因的鉴定及其应用
研究发现,过度活化的NF-κB与肝炎和肝细胞癌(HCC)的发生密切相关,但其完整而精确的分子途径和机制目前还不清楚。本研究使用ChIP-seq和RNA-seq高通量测序技术,在TNFα诱导的人HCC细胞系HepG2细胞中共计鉴定出699个NF-κB直接靶基因(direct target gene, DTG),包括399个激活基因和300个抑制基因。其中,216个基因(包括126个激活基因和90个抑制基因)是目前已经鉴定出的HCC基因标志物。比较TNFα诱导的HepG2细胞、LPS诱导的THP-1细胞和TNFα诱导的HeLa细胞中NF-κB靶基因数目,仅有24–46个NF-κB靶基因由两种细胞系共有,表明本研究鉴定出的NF-κB DTG具有HCC细胞特异性。基因功能注释分析表明,HepG2细胞中的NF-κB DTG主要富集在经典的NF-κB生物学过程,如免疫系统过程、压力反应、刺激反应、防御反应和细胞死亡,并且涉及MAPK、TNF、TGF-β、趋化因子、NF-κB和Toll样受体KEGG信号通路。部分NF-κB DTG也与丙型肝炎和乙型肝炎病毒密切相关。此外, 82个NF-κB DTG编码的分泌蛋白是目前临床上已经使用的HCC生物标志物,如CCL2和DKK1。最后,通过ChIP-qPCR和RT-qPCR实验证实,NFKB1、NFKBIA、CCL2、IL1A、IL1B、PTX3、NUDT7、EFNA5、ID4、GPC6、KLF15、DKK1、OAZ2和IGFBP3这14个基因是TNFα诱导的HepG2细胞中NF-κB DTG。这些结果为进一步研究NF-κB相关的分子机制和HCC生物标志物诊疗技术的发展提供了有价值的基因信息。
2. NF-κB激活的肿瘤细胞特异性基因疗法及其应用研究
转录因子 NF-κB 在各种肿瘤细胞/组织中过度活化,已经成为抗肿瘤药物研发和肿瘤治疗的优良靶点。正因如此,过去几十年发展了无数的NF-κB活性抑制剂,然而由于
不可避免的毒副反应,没有一例抑制剂成为临床使用的药物。本研究中,利用NF-κB在肿瘤细胞中高度活化的生物学特性,发展了一种肿瘤细胞特异性基因疗法,即NF-κB激活的基因表达(NF-κB-activated gene expression, Nage)载体用于癌症治疗。Nage载体通过将NF-κB诱骗子序列(decoy)与最小启动子序列(minimal promoter)融合构成NF-κB特异性启动子(decoy minimal promoter, DMP),DMP与肿瘤细胞内高表达的NF-κB结合,从而激活下游效应基因的表达。本研究首先使用Western-blotting方法验证了NF-κB p65蛋白在肿瘤细胞中特异性表达。随后以绿色荧光蛋白ZsGreen作为效应基因,证实Nage载体可在肿瘤细胞中特异性表达效应基因,产生绿色荧光,而在正常细胞中不表达效应基因。随后,以 CRISPR/Cas9 作为效应基因,在靶向端粒重复序列的 sgRNA (TsgRNA)的引导下,Nage载体特异性地诱导多种肿瘤细胞死亡,包括HepG2、HeLa、PANC-1、MDA-MB-453、A549、HT-29、SKOV-3、Hepa1-6和RAW264.7,而对正常细胞293T、MRC-5和HL7702不产生影响。最后,将表达Cas9-TsgRNA的Nage载体包装进腺相关病毒(adeno-associated virus, AAV)中,构建肿瘤基因治疗载体AAV-Nage,通过静脉注射给药途径注入小鼠体内,显著地抑制小鼠体内肿瘤的生长。本研究发展的肿瘤细胞特异性基因疗法Nage载体为抗肿瘤药物研发提供了一种新思路。
3. 端粒酶激活的肿瘤基因疗法及其应用研究
癌症是由一系列表观基因突变引起的,以多种复杂形式存在的难以预防和治疗的疾病。端粒酶是真核细胞中负责端粒延长的一种RNA聚合酶。研究发现,端粒酶的活性在大多数正常细胞中被程序性关闭,而在90%的肿瘤细胞中被重新激活,使其成为癌症治疗中的重要靶点。目前,已开发出多种端粒酶活性抑制剂用于治疗癌症,但由于不可避免的毒副反应均已失败告终。本研究中,利用肿瘤细胞中端粒酶的活性发展了一种名为端粒酶激活的基因表达(telomerase-activated gene expression, Tage)系统用于治疗癌症。Tage系统由一段携带端粒酶可识别的3 粘性末端效应基因表达载体、表达dCas9-VP64 人工转录因子的表达载体和靶向端粒重复序列的 sgRNA(TsgRNA)组成。以CRISPR/Cas9作为效应基因,Tage系统有效地杀灭多种肿瘤细胞,包括HepG2、HeLa、PANC-1、MDA-MB-453、A549、HT-29、SKOV-3、Hepa1-6和RAW264.7,但对正常细胞293T、MRC-5、HL7702和骨髓间充质干细胞(BMSC)不产生影响。更重要的是,酵母同宗接合切换内切酶(homothallic switching endonuclease, HO)切割产生的4碱基3? 粘性末端可被细胞中端粒酶识别并延伸,为Tage系统体内应用奠定基础。以腺相关病毒(adeno-associated virus, AAV)作为基因载体,实现了Tage系统体内安全有效治疗肿瘤的目的。荷载Tage系统的AAV经静脉注射给药,显著地抑制小鼠体内肿瘤的生长,并且没有观察到明显的毒副反应。
4. 肿瘤干细胞基因治疗载体的构建及其应用研究
癌症由不同分化等级和致瘤潜力的肿瘤细胞构成,是一种高度异质性、难以预防和治疗的疾病。癌干细胞或肿瘤干细胞(cancer stem cell, CSC)是具有自我更新、多能分化和无限增殖潜能的肿瘤细胞亚群,对维持肿瘤细胞异质性和致瘤性起关键作用。CSC可抵抗常规抗癌药物,并在肿瘤转移和复发中发挥重要作用,使得抗肿瘤药物研发面临巨大挑战。本研究中,使用前期发展的两种肿瘤细胞特异性基因疗法,端粒酶激活的基因表达(Tage)系统和NF-κB激活的基因表达(Nage)载体24 h内有效地杀灭旺盛分裂的肿瘤细胞,残存细胞具有CSC自我更新增殖特性。qPCR检测发现,涉及上皮/间充质细胞转换、Wnt信号通路、细胞间粘附以及干细胞标志基因VIM、TWIST、p53、p16INK4α、p21、CD24、CD326、DLL4、JAG1、Notch1、MUC1、DACH1、CD133、CD44、ATXN1、BMP7、CXCR4、GATA3、JAK2、KLF4、LIN28a、LIN28b、MYCN、NANOG和SOX2,在残存肿瘤细胞中均高表达,表明Tage系统和Nage载体可在24 h内有效分离得到CSC。研究发现,NF-κB 不仅在各种肿瘤细胞中高度活化,在 CSC 中也显示出高活性,使其有望成为针对CSC的肿瘤治疗靶点。将前期发展的新型NF-κB活性抑制剂,即NF-κB特异性启动子DMP调控的靶向RelA的miR533包装进腺相关病毒(AAV)中,构成肿瘤干细胞基因治疗载体AAV-miR533。AAV-miR533有效地杀灭HepG2 CSC,感染病毒20 d后的CSC仍没有再生长增殖迹象。本研究为分离CSC和开发针对CSC的抗肿瘤药物提供了新方法。
总之,本研究通过联合运用高通量测序技术、生物信息学技术和传统的分子生物学技术,鉴定出了肝癌细胞中NF-κB的结合靶点和靶基因,发展了三种肿瘤细胞基因治疗新技术—NF-κB激活的基因表达(Nage)载体、端粒酶激活的基因表达(Tage)系统和肿瘤干细胞基因治疗载体,这些基因技术在肿瘤基因治疗领域具有重要的应用价值。