【摘 要】
:
小行星探测是深空探测的重点方向之一,探测器对小行星深层样本的采集需要附着锚固于小行星表面,超声波钻需要的钻压力小、功耗低,并且几乎不对机架产生附加力矩,其工作特性适合应用于小行星探测器的钻进锚固任务中。在超声波钻工作特性的研究基础上,设计驱动电源并研究谐振控制算法,从而高效稳定地驱动超声波钻,并适应于不同的钻进对象和地外空间的高低温环境。作为整体设计的理论基础,研究超声波钻的工作特性,分析了超声波
【基金项目】
:
国家自然科学基金项目(项目编号:51975139); 中国空间技术研究院预研课题;
论文部分内容阅读
小行星探测是深空探测的重点方向之一,探测器对小行星深层样本的采集需要附着锚固于小行星表面,超声波钻需要的钻压力小、功耗低,并且几乎不对机架产生附加力矩,其工作特性适合应用于小行星探测器的钻进锚固任务中。在超声波钻工作特性的研究基础上,设计驱动电源并研究谐振控制算法,从而高效稳定地驱动超声波钻,并适应于不同的钻进对象和地外空间的高低温环境。作为整体设计的理论基础,研究超声波钻的工作特性,分析了超声波钻的工作原理和能量转换流程;建立了换能器的电学模型并分析其阻抗特性,认为超声波钻应工作于串联谐振频率;研究了负载和环境温度的变化对换能器谐振频率和特性参数的影响;考虑机械系统的影响,研究了换能器在谐振区间的滞后特性;针对换能器在串联谐振频率的阻抗特性,设计匹配网络,以提高驱动电源的驱动效率。基于超声波钻的驱动原理设计了驱动电源的整体结构,对信号发生模块、逆变模块、调压模块、信号采集处理及控制模块的电路进行了详细的设计及仿真分析和优化,并制作了驱动电源样机,输出驱动信号幅值可达到三百伏以上,驱动信号频率可控,理论频率分辨率可达0.01164 Hz,能够实时反馈超声波钻的工作状态。为了使超声波钻处于理想的工作状态,设计了驱动电源的整体控制方案。分析实际阻抗采样信号,采用频率扫描的方法识别阻抗极值,使驱动电源启动时能够可靠地识别谐振频率;设计并对比分析了两种谐振频率跟踪算法,最终采用基于模糊控制的谐振频率跟踪算法跟踪工作时谐振频率的漂移,实现了稳定的跟踪效果;研究换能器的恒电流控制算法,进一步提升超声波钻工作的稳定性。设计试验并验证了超声波钻驱动电源的驱动性能。在恒电流控制下测试换能器两端电流和端面振幅,结果表明恒电流控制能够使换能器电流保持恒定并抑制端面振幅的衰减;在常温下进行不同岩石样本的钻进试验,验证了驱动电源能够识别超声波钻的谐振频率并进行跟踪,使换能器阻抗维持在低点,并适应于不同的钻进对象;在-60~120℃温范围内每隔30℃进行钻进试验,结果表明驱动电源能在不同的温度环境下保持稳定的驱动状态,分析温度试验数据获得了谐振频率、换能器特性参数、钻进速率与温度之间的关系。
其他文献
随着智能制造技术的快速发展,高精度、小批量、定制化成为制造业新的生产模式,随之也对检测技术提出了更快速、更智能、更准确的新要求。近年来,关节机器人和三维传感器结合的机器人测量系统为工业领域三维自动检测提供了新的发展路径。然而,虽然机器人测量系统在柔性化、智能化方面有较好的性能,但由于其系统误差和标定误差,使得直接通过系统对零部件三维重构的精度不高,无法满足日新月异的制造业需求。点云配准技术作为三维
<正>坚持党建工作与生产经营深度融合,以企业改革发展成果检验党组织工作成效,是改进和加强新时代国企党建工作的重大课题。国网天津市电力公司坚持问题导向、目标导向相结合,持续创新思路举措,推动党建与中心工作深度融合,党建价值创造充分彰显,形成具有推广价值的经验做法。
点云配准是三维点云处理的关键技术之一,其被广泛应用于机器人导航、自动驾驶、三维表面重建以及工业测量等领域中。由于三维扫描设备的视野限制,单次扫描通常无法得到所需的工件点云,需要变换扫描设备的姿态,从不同的视角扫描工件得到多片点云,通过点云间的重叠区域求解出点云的正确位姿,将不同视角的点云统一到同一坐标系中,使之成为完整的点云模型。本文侧重于三维点云两两配准算法的研究,针对经典ICP算法及其变体对于
光学模具用于制造各种光学元件,在国防和民用工业中得到了广泛的应用。随着国防和民用工业的发展,人们对光学元件的面型精度和表面质量提出了越来越高的要求,因此光学模具的精密与超精密加工需求迫切。在光学模具的精密与超精密加工技术当中,超声椭圆振动切削技术能有效减小切削力,减少切削热,减缓刀具磨损,改善表面质量,且加工效率高,因而具有优异的特性。实现超声椭圆振动切削的关键部件,是超声椭圆振动切削装置。然而,
<正>习近平总书记明确指出:“国有企业是中国特色社会主义的重要物质基础和政治基础,是我们党执政兴国的重要支柱和依靠力量。”辽河油田公司党委牢牢把握融入中心、服务大局工作定位,通过全方位、全要素融合,促进党建工作融入生产经营工作常态化、制度化,充分发挥党建工作的政治功能和服务功能,
近年来,随着科技的高速发展,镍基高温合金等难加工材料在航空航天领域受到更多关注。电火花加工由于自身诸多优点,很适用于加工此类难加工材料,在燃气涡轮叶片气膜冷却孔加工中被广泛应用。然而由于电火花加工过程存在电极损耗,难以确定穿透时机,在加工如气膜冷却孔一类存在内部流道的零件时易发生背伤,损坏工件,因此穿透检测研究尤为重要。但是,目前对于电火花小孔穿透过程仍缺乏研究,已有的穿透检测策略可靠性较差。因此
随着科学技术的发展,微细加工在生物医学、航空航天、光学、电子和模具等高科技行业占据着越来越重要的地位。微细铣削机床作为微细加工载体,其控制精度对工件的加工质量有着极为重要的影响。另一方面,数字孪生技术则能够通过物理实体参数和各类传感器的数据构建物理实体与相应的虚拟模型之间的联系,优化产品的生命周期,极大地提高了产品的智能化。面向微细铣削加工的数字孪生技术,本课题首先对微细铣削机床的控制系统进行了研
混合所有制下如何将党建工作与生产经营深度融合,发挥党建工作优势,实现党建与企业生产经营共赢,是摆在混合所有制下所有党务工作者面前的一个难题。本文以A公司的重庆分公司为例,探析了混合所有制下党建工作与生产经营深度融合的路径方法,并进行了经验总结。
蛇形机器人作为航空发动机维修检测的自动化手段,解决人工检测时间成本高的问题,其自由度超冗余,能够适应航空发动机内部结构复杂,空间狭小的工作环境。为了解决航空发动机内部特定环境下轨迹规划复杂的问题,本文对航空发动机原位检测用的蛇形机器人的轨迹规划进行了研究。采用改进型的D-H坐标系建模方法,建立了蛇形机器人数学模型。对三关节、多关节蛇形机器人的正向逆向运动学算法进行研究,基于几何分析方法,对其正向、
微结构表面具有超疏水性、低粘附性、耐磨损性、高润滑性及复杂的光学性能等优势,在国民经济领域和军事装备领域应用前景广泛。随着微结构表面在不同应用领域的市场需求量的不断增加,对微结构表面形状的复杂度和加工质量提出了越来越高的要求。快速刀具伺服车削技术和慢速刀具伺服车削技术(F-/STS)可以实现微结构表面的高效率和高质量的加工,是目前国内外研究的热点领域。切削力是反映和评价加工过程的重要物理参数,切削