【摘 要】
:
Fe-Pt-B合金可以形成以Llo-FePt永磁相和Fe2B软磁相为主的纳米复相永磁体,两相间产生的交换耦合作用使其具有较为优异的永磁性能。因为Pt的价格昂贵,所以合金的成本较高,限制了其实际应用。有必要在保持合金优异永磁性能的前提下,进一步降低Pt的含量。本论文主要研究高B低Pt含量Fe-Pt-B合金在液态急冷条件下和热处理后的组织和磁性能,以及Co元素添加对合金的组织和磁性能的影响。主要结果如
论文部分内容阅读
Fe-Pt-B合金可以形成以Llo-FePt永磁相和Fe2B软磁相为主的纳米复相永磁体,两相间产生的交换耦合作用使其具有较为优异的永磁性能。因为Pt的价格昂贵,所以合金的成本较高,限制了其实际应用。有必要在保持合金优异永磁性能的前提下,进一步降低Pt的含量。本论文主要研究高B低Pt含量Fe-Pt-B合金在液态急冷条件下和热处理后的组织和磁性能,以及Co元素添加对合金的组织和磁性能的影响。主要结果如下:1.对于Fe90-xPt10Bx系液态急冷合金,x=15-20时形成非晶+fcc-Fe Pt相;x=
其他文献
近年来我国经济迅猛发展,但是大气污染日益严重,已经严重影响人们的正常生活。氮氧化物是大气污染的主要组成部分之一,也是形成雾霾的主要原因。燃煤电厂是主要的氮氧化物排放源,燃煤电厂采用烟气脱硝技术已经成为我国火电发展的必然选择。目前选择性催化NH3-SCR法脱硝以其工艺可靠、效率高的优势已成为火力发电机组脱硝的主流技术。但是在实际运行NH3-SCR脱硝中,还是存在一些问题比如催化剂烧结、催化剂积灰、硫
当前Cu-Zn-Sn-硫族化物薄膜太阳能电池因其突出的优点(直接带隙约1.45-1.51eV、光吸收系数高约104cm-1、无毒、矿源丰富、价格便宜和环境友好),近年来成为可再生能源领域研究的热点。本文以Cu-Zn-Sn-硫族化物为研究对象,采用磁控共溅射法制备了Cu2ZnSnS4 (CZTS)薄膜材料,并利用高温硒化工艺制备了Cu2ZnSn(SSe)4 (CZTSSe)薄膜吸收层材料,评估了它们
煤炭在能源生产和消费结构中占据主导地位,然而在其燃烧的过程中不可避免的会产生各种污染物,燃煤汞污染物的控制已经得到各国的广泛关注,活性炭脱汞的研究技术是较为成熟且应用较为广泛,但是活性炭脱汞行为及其机理的研究还不够成熟,本文从活性炭表面物理特性、化学特性及烟气组分这三个方面对脱汞能力的影响进行了研究,同时结合吸附动力学模型分析研究改性活性炭对汞的吸附过程,旨为制备低成本、高吸附容量的活性炭提供理论
锂离子电池由于能量密度高、充放电速度快、循环性能优良、环境友好和低成本成为人们研究的热点,来满足社会进步发展的需求,成为使用最广泛的二次电池。对高能量密度、循环性能优良的负极材料的探索已经积极展开。四氧化三铁具有比容量高、生产成本低、自然储量丰富及对环境和生物无害等优点,被认为是最有前途的负极材料之一。碳纳米管作为负极材料也吸引了广泛的关注。由于其优良的导电性,比表面积高,超薄的管壁和结构的灵活以
石墨烯,由单层石墨构成,由于其优异的物理和化学性能,引起了人们的广泛关注。将二维的石墨烯组装构成三维石墨烯的宏观结构,便于石墨烯应用于环境能源与生物传感等相关领域。三维石墨烯不仅拥有石墨烯本身的特性,而且具有三维网络多孔结构,使得三维石墨烯拥有更高的比表面积,机械性能更强,更优异的电子传输。基于三维石墨烯功能化的复合材料制备与应用仍然是当前研究石墨烯的一个重点。然而单组分的材料有着本身固有的缺陷,
近年来锂离子电池因具有放电比容量大、循环使用寿命长,而受到了研究者们的广泛关注。电池隔膜作为锂离子电池中重要的组成部分,其最重要的作用是避免锂电池正负极直接接触。目前商用的锂电池隔膜仍以聚烯烃隔膜为主,如聚乙烯(PE)和聚丙烯(PP)隔膜。聚烯烃隔膜虽然具有力学性能好、厚度薄、耐化学腐蚀等特点,但其对极性电解液浸润性差,孔隙率低等缺点会影响锂电池的电化学表现,尤其是其较差的热尺寸稳定性容易引起电池
随着移动电子设备、电动汽车、智能电网以及航空航天等领域的迅猛发展,商用锂离子电池受其传统电极材料理论比容量限制,已无法满足日益增长的能源需求,开发具有高能量密度、高功率密度和环保经济的电极材料体系以及其他锂二次电池体系迫在眉睫。目前研究者致力于探索应用于锂离子电池、锂有机电池和锂硫电池等锂二次电池的新型电极材料,对推动能源存储系统的科学可持续性发展具有重要意义。针对电极材料存在的瓶颈问题,包括氧化
马铃薯的种质资源非常丰富,不同种之间有着很大的性状上的差异,基于这种差异性状构建分离群体,可为后续的目标基因定位与分子标记开发奠定基础。本实验室前期利用DM1-3(S.phureja)和40-3(S.chacoense)构建了PVY抗性分离群体,用于PVY极端抗性基因Rychc的精细定位与克隆。另外该群体在马铃薯薯形和休眠上也存在较大分离,本实验室正在开展相关基因的定位与克隆。本研究通过DM1-3
目前作为实现量子计算机的物理系统有很多方案,在诸多方案中,基于Josephson结的超导体方案由于设计和制备的工艺比较成熟、与外界耦合较强、宏观量子系统比一般量子系统大1000倍等优势而备受关注。本文主要研究了超导Al/AlOx/Al隧道结的制备工艺,并通过对隧道结的超导电流密度Jc、面积面积归一化电阻Rc同氧化气压P的关系以及上、下电极的铝薄膜厚度同Rc关系的研究来改善超导隧道结的质量。整个制备