论文部分内容阅读
高光谱遥感影像具有波段多、数据量大、数据不确定性和监督分类时易受Hughes现象影响等特点,由此对现有的图像信息分析处理技术提出了更高的要求。支持向量机(SVM)是一种基于统计学习理论且已被众多实验所证实的有效学习机制,能较好地解决小样本、非线性、高维数等问题,并已被成功地应用于高光谱分类领域;但对于大规模高光谱影像的分类问题,SVM传统算法(串行)的训练和预测效率低下,而单机和传统分布式环境也难以提供处理海量数据所需的强大并行运算能力和足够的内存空间。有鉴于此,本文引入并行支持向量机(PSVM)和云计算技术,设计出一种基于云计算的并行支持向量机(Cloud-PSVM)分类模型,提出云环境下Cloud-PSVM的增量学习算法和参数的全局优化策略,并将Cloud-PSVM应用于土地利用分类领域,构建基于Hadoop平台的高光谱影像分类云服务。整个研究从计算模式、分类方法和服务模式这三方面入手,旨在保证分类精度的前提下提高高光谱影像分类的效率,推动大规模高光谱影像地物信息提取与机器解译的规模化和智能化。主要研究内容与成果如下:(1)为有效地提高Hyperion高光谱影像的空间分辨率,设计出一种改进型的Gram-Schmidt高光谱影像融合方法,实现了Hyperion高光谱影像与同一遥感平台及同一时相的ALI高空间分辨率影像的高效融合;提出一种基于光谱-地形,以及纹理特征的组合径向基核函数(MRBF),并构建出一种基于MRBF的二叉决策树多类SMO (BDT-SMO)分类器,可有效地提高高光谱融合影像的分类精度。(2)构建Hadoop云储存平台,采用Hadoop分布式文件系统(HDFS)和Hbase数据库实现大规模高光谱融合影像数据和样本数据的分布式存储,通过合理选择分割策略、存取机制和数据组织形式,可有效地提高大规模融合影像和样本数据的存取效率。(3)为有效地提高大规模训练样本的并行学习效率,提出一种基于交叉样本的改进型混合并行支持向量机(YBJCF-PSVM)模型,并与GPU技术相结合,以提高单节点的并行学习能力。此外,设计出一种基于MapReduce和YBJCF-PSVM模式的Cloud-PSVM分类器。(4)将Cloud-PSVM应用于土地利用分类领域。采用MapReduce模式对实验区高光谱融合影像进行并行特征提取,并通过Cloud-PSVM分类器对大规模样本进行并行训练与预测。实验结果表明,Cloud-PSVM分类器能在保证分类精度的前提下较大程度地提高高光谱融合影像的分类效率。此外,为能有效地提高土地利用分类结果的发布效率,还设计并实现了一种基于Hadoop的高光谱融合影像分类的云服务。(5)在云计算环境下设计出一种基于MapReduce和壳向量的SVM增量学习算法(MapReduce-HASVM),可有效地提高Cloud-PSVM分类器的泛化能力和扩展性。此外,还提出一种基于云计算和并行遗传算法(PGA)的Cloud-PSVM参数分布式全局优化策略,可有效地提高Cloud-PSVM分类器的分类精度和核参数的优化效率。