频率域逆时偏移的优化算法

来源 :哈尔滨工程大学 | 被引量 : 0次 | 上传用户:xuhuangyun1118
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
石油和天燃气是国家的战略物质,存储量的减少迫使人们去寻找更难发现的油气藏,对勘探技术的要求也越来越高。地震勘探、地震数据处理是寻找石油和天燃气的主要手段,叠前深度偏移是地震数据成像技术中的重要环节,主要研究方法分为两大类:一类是克希霍夫积分法,另一类是波动方程方法即基于波动理论的波场递归延拓方法。克希霍夫方法在处理不规则数据、偏移速度分析、计算效率和局部成像孔径控制方面具有优越性和更强的灵活性,缺点是有高频近似,难以处理复杂波现象。波动方程方法在处理复杂波现象如多旅行时,焦散和振幅保持方面比克希霍夫方法更自然更简单,在复杂构造下成像精度更高。基于波动方程的逆时偏移成像由于不受地下构造倾角的限制,精度更高,振幅更精确,近年来逐渐成为主流的偏移技术。逆时偏移的缺点是效率低,对有限差分法存在频散,所以该方法的研究重点在于提高计算效率和去噪。  本论文选择在频率-空间域实现逆时偏移,这样可以避免因时间差分带来的频散,理论上讲比时间域偏移具有更好的成像精度。在空间域分别采用五点和九点差分格式来逼近二阶导数,从而得到一个系数稀疏的频率域波动方程组。通过和共轭梯度法的比较发现LU分解法尽管更加消耗内存,但计算速度更快。所以本文采用了LU分解法来求解此方程组得到延拓波场,最后根据最大相关成像准则进行成像。由数值算例可以看出九点差分格式的频散明显好于五点差分,为了进一步提高计算效率,论文使用了合成震源记录技术,数值算例验证了该方法正确、有效。
其他文献
在这篇论文中,主要讨论两类问题:第一类,在完备非紧黎曼流形Mn上,考虑非线性椭圆方程△u+aulogu=0正解的梯度估计,其中a为常数。  第二类,非自共轭算子-△+V+(e)1的第一特征值的
在寿险公司,传统上采用确定的评估利率和死亡率来计算保费和准备金,然而投资收益率风险和死亡率风险都是寿险公司面临的相当重要的风险。本文对这两类风险进行了系统的分析,并用
在70年代至80年代初,国产JKM-(1)系列多绳提升机所配减速器均为中心驱动的ZG系列弹性基础减速器,该种减速器由于设置了弹分机座,可以减少齿轮运转时的冲击以及机器振动时对并塔的影
1存在问题我矿使用的是沈阳矿山机械厂生产的2400×12000重型板式给矿机,它的传动系统是电动机→减速机Z→开式齿轮3、6。开式齿轮带动主动轴部和链轮轴,由链轮轴带动送料带,板
工程及矿山机械上使用液力变矩工器,具有起步平稳,操作方便,可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综
本文研究了新会计准则下分红两全保险的准备金评估问题,考虑确定性退保率,随机性投资收益率和随机性未来红利对评估准备金的影响。文章分别对现金领取、累积生息和购买交清保
本文以古典风险模型为起点,在前面一些成果的基础上做了一定扩展,对几类带干扰的风险模型进行了研究,在模型中加入了干扰项,从而对古典风险模型做出了一些补充和完善。  本文介
图的能量是化学图论中的一个重要课题,它来源于化学研究领域.化学家发现共轭碳氢化合物形成的实验热度与总的π—电子能量(Eπ)紧密相关.而在Hückel分子轨道(HMO)近似结构下,计
有理函数Julia集的拓扑是复解析动力系统研究的重要问题之一,多项式Julia集的连通性由于Branner-Hubbard猜想的证明[47]已得到较为完整的刻画.对于有理函数动力系统,二次有理
填充与覆盖问题是图论中非常重要而又基本的问题,在物理学、计算机网络及组合优化等领域都有十分重要的意义。填充和覆盖是一对具有对偶性质的概念。作为填充与覆盖问题中一个