【摘 要】
:
液相样品离散化是生物、化学分析或者微纳米材料合成、药物颗粒制备中的重要步骤,通过离散化技术将一个样本分成大量等体积的微液滴,一方面可以达到液滴中靶标单分子的富集,降低背景信号的干扰;另一方面,每一个微液滴均可视为独立的反应器,是原反应体系极大的“缩小”,可以大幅减少样本的浪费。工业上比较常见的液相样品离散化方法具有规模化制备微液滴的优势,但是无法精确地调控微液滴,且重复性较差,也难以应用于微量样品
论文部分内容阅读
液相样品离散化是生物、化学分析或者微纳米材料合成、药物颗粒制备中的重要步骤,通过离散化技术将一个样本分成大量等体积的微液滴,一方面可以达到液滴中靶标单分子的富集,降低背景信号的干扰;另一方面,每一个微液滴均可视为独立的反应器,是原反应体系极大的“缩小”,可以大幅减少样本的浪费。工业上比较常见的液相样品离散化方法具有规模化制备微液滴的优势,但是无法精确地调控微液滴,且重复性较差,也难以应用于微量样品的离散化,因此在应用中存在着较大的局限性。近年来,液滴微流控技术因其高度可控,精准操控的优点成为了大规模液相样品离散化的主流平台,但是该平台要么过于依赖流体驱动装置,要么依赖精密的加工技术,要么需要添加表面活性剂维持液滴稳定,在各种应用中仍然存在较多缺陷。针对现有液体离散化技术的缺点,本论文利用油相触发的模板化去润湿现象开发了一种液体自离散化技术,该技术无需精密的流体驱动装置,只需将微腔阵列芯片进行预脱气处理,通过加样、分离操作,即可实现液相样品的快速离散化,并通过数字化生物检测和微粒合成等示范性应用验证了该技术的适用性。主要研究内容如下:1.提出了基于模板化去润湿效应诱导的液体快速离散化技术,并通过仿真软件进行了模拟分析,揭示了其工作机制,同时设计并制造了一款网格化微腔阵列芯片,该芯片可在不到90 s时间内将35μL液相样本自动离散化成4万多个微液滴,且样本利用率高达98%。2.为了验证该技术应用于数字化生物分析的可行性,我们将所设计的芯片分别应用于数字聚合酶链式反应和数字化细菌检测,该芯片可实现靶标核酸分子和细菌的高灵敏检测,证明了该技术在数字化生物分析领域具有极大的应用潜力。3.为了进一步证明该技术的多功能性,我们将芯片成功应用于微颗粒合成,实现了简便、快速合成球形光子晶体和阿魏酸球形晶体,通过粒径分析得到我们合成的微颗粒具有良好的均一性(变异系数<7%)。
其他文献
我国经济迅速发展的同时带来了大气、水、土壤等各种环境污染,其中大气污染最为严重。随着大量的化石燃料被使用消耗,燃煤电厂会大量排放SO2、NOx等气体污染物,对环境和人类会造成严重损伤。国家生态环境部为保证环境优良发展,制定了火电厂大气污染物超低排放国家标准(GB13223-2011),随之而来的问题就是国产检测仪器性能无法达到超低排放国家标准,而进口仪器虽然性能优良但价格高昂。因此基于我国重大科学
半导体行业一直以摩尔定律为准则在高速发展,随着器件的集成度提高,硅基器件已经无法满足摩尔定律,石墨烯和类石墨烯等二维材料的出现继续推进半导体行业的发展,由于石墨烯和类石墨烯等二维材料具有原子层厚度,同时具有优异的电学、光学、热学等性能,使其成为了人们研究的热点。同时,国家大力发展半导体行业,大力开拓芯片领域,芯片是由几十个、千万个或上百亿个晶体管组成,故晶体管的性能对芯片的整体性能起着决定性的作用
作为一种阻尼可控器件,磁流变阻尼器具有结构简单、体积小、反应快、能耗低等优点,可以根据外加磁场调控阻尼力大小,在航空、汽车、建筑等领域具有广泛的应用前景。由于磁流变液自身无法避免的沉降特性,在长时间静置工况下,传统磁流变阻尼器存在性能不确定性,甚至发生机械卡滞,影响器件性能及寿命。针对传统磁流变阻尼器存在的问题,本文基于“运行分散”设计理念,提出并设计一种新型磁流变阻尼器,并称之为运行分散磁流变阻
管道在航空航天和石油化工等工程领域以及给水疏水等日常生活中都有着广泛应用,然而管内流体脉动、气柱共振以及与管道相连设备等带来的时变复杂振动,严重影响了运行安全和使用可靠性。磁流变弹性体(Magnetorheological Elastomer,MRE)吸振器是在传动被动式和主动式吸振器基础上发展而来的新型智能调谐器件,不仅可将振动能量从被保护对象传递到子系统,以实现振动衰减,还具有调节范围宽、响应
模糊视频复原长期以来一直是计算机视觉和数字图像处理领域的热点课题,保证模糊视频的高质量复原对于日常生活、医疗科学、安全监控等各个领域都有着重要意义。运动模糊是模糊视频中最常见的类型,早期对运动模糊视频的复原研究通常是将视频简化为单帧模糊图像进行复原,这类研究方法利用帧内信息,而忽略了帧间的互补信息。近年来,卷积神经网络用于运动模糊视频盲复原已经取得了较好的效果,这类方法可以有效利用视频邻近帧之间内
随着微电子行业制造工艺的提高,板上芯片等电子器件朝着集成化、微型化的方向发展。伴随这一趋势的是芯片等电子器件的发热量持续增加,若不将这些热量及时散走,将对器件甚至整个系统造成影响。因此,散热问题已经成为目前微电子领域的首要问题。目前针对电子器件的散热方式中,大部分是通过外加散热器,具有体积较大、重量大且与板上器件难以集成等缺点。微流道热沉(Microchannel heat sink,MCHS)由
荧光光谱检测技术是一项关键的光电检测技术,该技术的实现离不开荧光材料。在荧光材料中,量子点具有优异的物化性质与光学特性。碳量子点与钙钛矿量子点作为两类新型量子点,凭借着优异的光学性质自发现以来就备受瞩目,但在一定程度上缺乏稳定性。因此,可以利用修饰、掺杂或包覆等手段对碳量子点与钙钛矿量子点进行操作,得到光学性能与稳定性俱佳的量子点基材料。基于量子点的荧光传感方式与荧光光谱检测技术,利用量子点基材料
在半导体加工和微纳器件加工制作过程中光刻是非常重要的一个技术,而光刻技术的发展离不开工件台系统的发展。工件台位置的精密检测直接影响光刻的套刻精度和产率。因此研制一套检测精度高、性能稳定的工件台位置精密检测系统,能够促进光刻技术的发展。本文通过分析光刻中掩膜版和硅片的位置关系及其光学模型,设计了基于光纤白光干涉测量技术的微间隙动态检测系统,用于检测掩膜版-硅片间的绝对间隙。首先,对显微测量技术、电学
针对康复医疗、训练领域中,对灵活便携性、可靠高效性的需求,需要实现传感器数量趋于少量化和训练动作的有效识别。从目前大多数研究现状来看,基于惯性传感器的动作识别技术通常采用多个节点进行动作捕获,对动作识别的研究主要集中于数据离线处理、使用复杂算法训练获取高识别率,对于实时性强和低硬件性能的动作识别研究还比较少。因此,本文设计提出基于惯性传感器的单点感测方案,以实现低成本、便携使用和强实时性。本文主要
压电宏纤维复合材料(Macro fiber composites,MFC)执行器是一种新型柔性微位移执行器,具有质量轻、柔韧性高、驱动力大的优点,被广泛应用于航空航天、交通运输、智能仿生和工业自动化控制等领域,但其宽频带输入-输出特性呈现较强的非线性特性,这会影响其构成的致动系统的控制精度。研究分析压电MFC执行器宽频带输入-输出特性并建立模拟方法,是实现压电MFC执行器致动系统宽频带高精度非线性