论文部分内容阅读
本论文主要是针对宽范围线性扫频光源中的关键技术开展研究,它们是高分辨率激光雷达成像(No.61471256)和高分辨率实时光谱分析仪中的核心关键技术,本论文的工作更多的是应用于高分辨率实时光谱分析仪中,为了在大范围内实现多波长并行扫频技术,该系统对多波长光源有更苛刻的要求,本论文采用了多项有创新的技术,使得多波长光源的各项指标有大幅度提高和改进,为项目的整体研究工作奠定了技术基础。本文主要内容:1.综述了各种多波长光源技术的发展现状和趋势,阐述了精细多波长光源在两个系统中的重要地位,一个是Tbit/s传输速率的高速光通信系统,另一个是超高分辨率近红外光谱仪,在这些系统中均采用了窄线宽,宽光谱范围,相邻波长频率间隔在10GHz量级的连续精细多波长光源及光频率梳。2.高速时分复用通信系统需要幅值平坦、高重复频率的脉冲光源,常规的主动锁模技术可以实现这样的脉冲光源,但是需要高频电信号;有理数谐波锁模技术可以用低频电信号产生高重复频率的光脉冲序列,但是光脉冲幅值不平坦。本文用低重复频率的方波电信号成功实现了高重复频率的锁模脉冲输出,得到了幅值平坦的光脉冲序列,其幅值起伏差异减小了两个数量级,实现了最高重复频率为15.7GHz的5阶平坦的有理数谐波锁模脉冲,且脉宽减小一倍,为16.2ps。3.为了克服多波长激光器输出的多波长激光线宽较宽的缺点,我们首次提出并实验验证了结构简单的全光系统,该系统可以将多波长激光器的线宽从MHz量级窄化到~10 kHz。多波长激光的线宽窄化了600多倍,同时噪声强度降低了20 dB,在10 nm范围内,有8个单纵模波长的线宽同时窄化到10 kHz。4.针对多波长光源技术中的光谱覆盖范围小的问题,首次提出了将法布里-珀罗激光器作为连续多波长种子源,用色散平坦的高非线性光纤将种子光源的3dB光谱覆盖范围扩大了5倍,达到了17.6nm,6db谱宽达到40nm。该技术的特点是可以在宽光谱范围内实现连续光的窄线宽光频率梳,与脉冲光的光频梳相比,没有色散展宽问题,应用时不需要色散补偿。5.由于增益介质的烧孔效应限制,在原理上限制了密集多波长技术的发展,本文采用光纤受激布里渊效应作为增益机制,从而在原理上避开了烧孔效应,不仅得到了频率间隔为10 GHz的19个波长的输出,而且这些多波长可以在28.5nm范围内(1543 nm到1571.5nm)实现同步、连续调谐。