基于金属纳米结构的增强型太赫兹调控器件及应用研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:xiao12112
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
太赫兹技术具有广泛的应用前景,是当前研究热点之一,其应用离不开高性能太赫兹调控器件的支撑。然而,受传统材料性能与结构的限制,基于传统材料的太赫兹调控器件无法满足高性能太赫兹系统应用的需求,迫切需要新的材料及方法实现高性能太赫兹调控器件。当前,交叉学科的发展促进了纳米技术在太赫兹技术领域的应用,具有局域表面等离激元共振特性的金属纳米结构,为太赫兹调控器件的发展提供了新的研究方向。本文基于金属纳米结构得到的太赫兹调制器及分束器,可显著地提高太赫兹波的调控性能及优化太赫兹光学系统的传输路径,并为拓展太赫兹功能器件的具体应用提供了新的方法和思路。本文主要研究内容如下:1.提出了基于银纳米颗粒的硅基太赫兹调制器。利用银纳米颗粒的LSPR特性,来增强硅的光子吸收率,实现了0.325-0.5THz范围内太赫兹波的调控。并通过仿真得到银纳米颗粒-硅结构截面的电场分布和吸收功率密度分布,进一步证实银纳米颗粒的局域表面等离激元共振特性,使得硅基底表面产生强烈的局域性电场增强,并导致其吸收增强。因此,通过理论仿真和实验结果表明,银纳米颗可以显著提升硅基太赫兹调制器的调制性能。2.提出了一种基于银纳米线/石墨烯共混膜的柔性多光谱分束器。通过在聚对苯二甲酸乙二醇酯(PET)基底上,旋涂银纳米线/石墨烯共混溶液得到该分束器。在0.5-1.5THz宽频段范围内,太赫兹反射率达到90%左右,同时,可见光的透过率超过86%,表明该分束器具有高效的多光谱分束性能。并通过弯曲实验,验证该分束器具有很高的机械稳定性。搭建了一套可见光/红外成像系统,将该分束器作为可见光/红外光分束器,可以得到清晰的光学成像和红外成像结果。证明该多光谱分束器可以很好地实现一个紧凑的可见光/红外多光谱成像系统,具有较高的实际应用价值。
其他文献
光电探测器是一种能够捕获光信号并将其转化为电信号的重要光电子器件,在成像、光通信、环境监测、夜视和安全检查等军事和国民经济领域有重要应用价值。十族过渡金属硫化物由于其可调带隙、高载流子迁移率和优异的空气稳定性而引起了人们广泛的关注。作为一种新颖的十族过渡族金属硫化物,二维二硒化铂(PtSe2)具有独特的光电性质,是实现宽波段高性能光电探测十分理想的光电材料之一。然而,面向多功能光电应用的集成器件的
随着大量新能源发电系统、储能系统以及电动汽车等接入电网,双向DC/DC变换器成为功率转换环节的关键部分,其中双有源桥式DC/DC变换器(DAB)由于具有高频化、功率双向流动以及电气隔离等优点,是目前研究的热点之一。本文以DAB变换器为研究对象,从电流应力、回流功率、软开关以及动态响应这几个特性出发,对DAB变换器进行优化控制,以期提高DAB变换器的动态特性和运行效率。首先,介绍了DAB变换器在单重
随着社会的不断发展与进步,以锂离子电池为代表的储能装置成为了现阶段国内外的研究热点。在实际的工程应用中,作为纯电动汽车中的核心储能装置的锂离子电池与智能电网具有非常密切的能量互动。电池电荷估计问题则是纯电动汽车中的锂离子电池的一项核心技术难题。针对电池电荷估计问题,本文从三个层面进行了详细的研究与分析。首先,本文搭建了电池特性测试平台,并对电池模型展开了研究与分析,将二阶RC等效电路模型与分数阶微
本文主要针对无刷直流电机转速闭环控制器进行研究,根据已有的无刷直流电机的相关参数以及控制性能指标,设计一种可靠的转速、电流双闭环控制系统。利用Matlab/Simulink软件环境,搭建BLDCM转速控制系统的仿真模型。利用仿真模型,方便实现对功能模块的修改与调试,进一步完成对转速控制系统的设计,并完成相应的硬件电路设计与控制程序编写。首先,论文简要介绍了无刷直流电机相较于传统有刷直流电机的巨大优
新能源发电与传统火力发电对电网的影响不同,新能源高渗透率并网使传统电网呈现出弱电网特性;同时线路中存在串补电容设备,其使电网阻抗在部分频段为容性,电网复杂的阻抗特性给新能源并网系统的稳定运行带来不利影响,并网逆变器在线估计电网阻抗特性并用于逆变器自适应控制是一种行之有效的方法。目前大多基于电阻串联电感的电网阻抗模型开展并网逆变器辨识电网阻抗的研究,不适用于描述串补电网以及多逆变器并网系统的电网阻抗
涡旋光场由于独特的光学性质,在光学领域具有很高的应用价值,尤其在光镊技术、高分辨率成像、量子通信等应用领域。与一般的光束不同,涡旋光场的模场相位分布是不均匀的,其特殊的相位分布造成了它的等相位面为螺旋型结构,使之具有轨道角动量(Orbital angular momentum,OAM),并且其光场中心存在相位奇点。近年以来有关涡旋光场的产生、传输和检测等研究层出不穷。其中,光纤中的涡旋光场具有更高
基于模块化多电平变流器的高压直流(High Voltage Direct Current Based On Modular Multilevel Converters,MMC-HVDC)电网具有运行能力灵活、功率独立调节等优势,可以解决间歇性可再生能源发电的大规模并网问题,将在全球能源变革中起着中坚力量。但MMC-HVDC电网发生直流短路故障时,故障电流上升速度快,容易造成子模块过电流和过电压等问
太赫兹波由于在电磁频谱中表现出特殊的物理特性,如大带宽、较低的光子能量、良好的穿透性及高光谱分辨率,在太赫兹成像与传感、材料表征、空间科学与通信等领域具有广阔的应用前景。具有众多优点的太赫兹技术极大促进了诸多太赫兹器件的发展,如滤波器、吸波体、天线、调制器、移相器等。介质谐振器由于其独特的优点,如体积小、易于激发、良好的商用性能等,可用于基于介质谐振器的太赫兹器件的研究中。目前在这一方面的研究不多
古气候学是研究地球过往气候的一门学科,目的是预测未来气候变化,解决环境污染、资源紧缺等问题。通过研究气候代理物(冰芯、贝壳、石笋等)中元素空间分布,推断古气候演化规律,对自然环境变迁具有重大的意义。基于激光诱导击代理穿光谱(Laser induced breakdown spectroscopy,LIBS)的元素成像技术,是基于原子光谱的新型分析检测技术。高能量的脉冲激光经过聚焦后,按照预定顺序扫
风电出力具有明显的随机性、波动性以及间歇性等不确定性特征,随着风电渗透率的不断增加,生成满足时序性要求的风电序列场景集用以描述未来风电出力的不确定性,对于含大规模风电的电力系统调度具有重要意义。面向电力系统调度的风电序列场景集需同时具备描述未来风电随机性和时序性的能力,本文据此提出一种基于自适应预测箱和状态转移概率矩阵的风电序列场景集两阶段生成方法。在单时段分析阶段,本文研究了一种基于自适应预测箱