【摘 要】
:
N-芳基酰胺结构广泛存在于天然产物、药物分子和材料科学中。配体促进铜催化的酰胺与卤代芳烃偶联是生成此结构的重要方法。但是便宜易得的芳基氯代物对于已知的铜催化体系来
论文部分内容阅读
N-芳基酰胺结构广泛存在于天然产物、药物分子和材料科学中。配体促进铜催化的酰胺与卤代芳烃偶联是生成此结构的重要方法。但是便宜易得的芳基氯代物对于已知的铜催化体系来讲仍然是基本惰性的底物。 我们发现氯代芳烃与酰胺的偶联在Cu2O(10 mol%)和N,N-双(3,4-二氟苄基)草酰胺(10 mol%)催化下,在130℃反应36 h能够完全转化而给出相应的偶联产物。多种酰胺都适用于这一反应体系,包括一级酰胺、内酰胺和2-噁唑烷酮。这个结果大大扩大了铜催化的酰胺与卤代芳烃偶联的底物范围。我们也利用相关配体研究了溴代芳烃和酰胺偶联反应,发现只需使用1-2 mol%的氧化亚铜和N,N-双(噻吩-2-亚甲基)草酰胺就可以使反应在110℃下完成,反应收率良好。对于位阻较大的邻甲基溴苯和N-甲基苯甲酰胺底物也能得到中等以上的收率。
其他文献
同样的生产企业,谁的成本低,谁就有竞争力,就能在市场竞争中立于不败之地。
The same manufacturer, who’s low cost, who will be competitive, will be able to remain i
空气中的颗粒物(PM,particulate matter)是空气污染对人类健康造成威胁的主要成分。目前已有大量的研究证实了PM的毒性效应。但是,PM造成的毒性效应机制仍然没有得到完善的研究。由于粒径较小的PM在肺部的沉降和聚集速度更快,可以对人体健康产生更大的危害。因此目前对粒径较小的PM 2.5对人类健康的威胁研究更为广泛。这其中,PM 2.5与人为排放的金属之间的相互作用以及其毒性效应与人类
功能分子的有序组装是目前界面化学和材料科学领域的重要前沿方向之一。通过分子设计与分子组装技术的不断提高和开拓,可以构造出更加完美、有效的功能化分子组装体系,这种高度
本论文主要包括两个部分: 1.树状大分子的合成: 由于在光通讯、光计算机和光能转换等方面的应用前景,合成大的光学非线性材料是当前非常活跃的高科技领域。本论文介绍了非
目前研究稀土离子(RE3+)及其化合物是否能够跨膜进入细胞的通行方法是,将接触过RE的细胞破膜后分离胞浆,测定胞浆中RE的含量。但是这种方法的缺点是,在分离细胞膜和胞浆的过程中
睾酮是一种内源性蛋白同化激素类兴奋剂,由于目前在其测定过程中具有预处理步骤繁琐且选择性不好等缺点,因而研究新型的高选择性吸附剂和预处理方法具有十分重要的意义。分子印
如何提高课堂教学效率?这是一个老话题,又是一个常说常新的话题。教学实践告诉我们,学生的学习效果如何,教学成功与否,在很大程度上取决于教师如何更加科学地利用课堂时间,提高课堂教学效率,将自己的教学效果发挥到极致。去年开学初,学校推出了“学案导学、问题引入、学教互动、当堂巩固”的课堂教学模式,经过了一年多的试验,我收获颇多,结合自己的教学实践谈一点体会。 一、“学案导学”起引领作用 学案导学就是教
石墨纤维是碳纤维家族中的重要成员,具有超高的模量,在航空领域中有着特殊的用途。石墨纤维的通常制造方式为在惰性气氛中加热碳纤维至2000~3000℃。在石墨化过程中,碳纤维可以形
前不久,我陪同几位日本企业家到中国访问,在一个城市里,市长在贵宾厅里会见了大家。会见前,工作人员给每一位日本企业家上了一杯茶,待市长坐定以后,工作人员又特地给市长端上一只特别的玻璃杯,所有的日本人都随着这位工作人员的动作,把视线瞄准了市长的杯子。会见结束以后,大家问我一个问题:“为什么市长的杯子要与我们不一样?”我愣了一下,日本人怎么会注意到这个细节问题呢?回到日本以后,我细心地观察了一下,发现日
目前,纳米技术成为国内外研究的热点。其中,金纳米颗粒作为金属纳米粒子重要的一员,和块状金相比,具有由于尺寸变小带来的四大效应(量子尺寸效应、体积效应、表面效应、隧道效应)