论文部分内容阅读
目前,地球上工业的兴旺发达给人类带来的污染问题越来越严重。高温、腐蚀性的废水和废气需要经过过滤处理后才能排放,常用的过滤材料为多孔陶瓷。使用多孔陶瓷管过滤最重要的是多孔陶瓷材料,其各项机械性能和孔隙率、孔径分布等直接决定了其使用寿命和效果。另外,降低多孔陶瓷的烧结温度能相应提高经济效益。本文利用固相烧结与液相烧结相结合的方法制备了堇青石结合碳化硅多孔陶瓷。从理论角度出发,对碳化硅颗粒与成型后的堇青石颗粒进行模拟,对两种颗粒的堆积情况进行计算,缩小实验范围。在实验过程中,通过对混料方式的改进,针对所选原料的特性,采用简单的分步加料的方法进行混料,使得原料混合在实际意义上更均匀。采用“埋碳法”进行烧结,避免氧化气氛导致的“高温氧化”的产生。对得到的制品进行力学性能、开孔率、孔径分布情况、微观形貌和成分分析进行系统的研究。以F500粒径碳化硅颗粒和粒径为3μm左右的氧化镁、氧化铝和二氧化硅为原料,1400℃烧结并保温2h后,成功制备出堇青石结合碳化硅多孔陶瓷材料,所得制品具有良好的耐碱性和一般耐酸性。改变堇青石原料的添加量,分别得到配方1、2、3、4的开孔率为44.87%、46.04%、46.92%和48.14%的制品,其抗折强度分别为33.62MPa、31.34 MPa、30.15 MPa和25.9MPa,孔径分布集中点大小分别为2.75μm、1.65-1.72μm、1.8μm和2.15-2.35μm,分析后确定配方3为最佳堇青石添加量配方。固定堇青石添加量下,分别以粒径为F360、F600、F800和F1000的碳化硅为主要原料烧结制品。配方5、6、7、8开孔率分别为48.7%、48.24%、45.64%和43.32%,抗折强度分别为20.49MPa、27.64MPa、28.37MPa和32.69 MPa,孔径分布集中点大小分别为2.4μm、1.45μm、1.2μm和1.1μm。制品的开孔率和抗折性能随碳化硅粒径变化的规律明显,孔径分布也随碳化硅粒径变化而不同。