论文部分内容阅读
本文主要研究了流体力学方程组的Cauchy问题。本文由以下几章组成:第一章为绪论。在本章中我们简要回顾了一阶拟线性双曲组和与本文相关的一些偏微分方程的研究历史及一些重要结果,并叙述了本文的主要结论。第二章研究了两维可压等熵Euler方程Cauchy问题光滑解的整体存在性。在初值是一个常状态的小扰动并且初速度的旋度等于零的假设下,我们证明了两维可压等熵Euler方程Cauchy问题光滑解的整体存在性。第三章研究了两维的可压非等熵Euler方程的Cauchy问题。当初值是一个常状态的小扰动时,我们给出光滑球对称解的生命跨度的精确估计。在第四章中我们证明了Minkowski空间R1+3中具有慢衰减初值的极值曲面方程Cauchy问题整体光滑解的存在性和唯一性。在第五章中我们证明了广义Boussinesq方程Cauchy问题整体解的存在性和唯一性。在适当的假设下,我们进一步证明当t趋向无穷大时,广义Boussinesq方程Cauchy问题整体小解的L∞范数趋向于0。第六章研究了R3空间中的不可压magneto-micropolar流体方程组和Rn(n =2, 3)空间中的具有部分粘性的不可压magneto-micropolar流体方程组的Cauchy问题,得到了光滑解的爆破准则。