论文部分内容阅读
目的:观察牛磺酸镁配合物(taurine magnesium coordination compound, TMCC)对各正常细胞离子通道以及缺氧/复氧损伤所致各异常离子通道的影响,评价TMCC对Nav1.5和HERG通道电流、通道动力学以及通道蛋白的影响,以探讨其抗心律失常作用机制及是否具有“致心律失常”作用。方法:采用Langendorff逆行主动脉灌注酶溶液消化法急性分离大鼠单个心室肌细胞,制备缺氧/复氧模型。采用全细胞膜片钳技术,在电压钳模式下记录低(100μmol·L-1)、中(200μmol·L-1)、高(400μmol·L-1)三个浓度的牛磺酸镁及胺碘酮(24.24μmol·L-1)对正常及缺氧/复氧大鼠心室肌细胞INa、ICa,L、Ito、Ikl的影响。建立表达HERG和Nay1.5基因的HEK293细胞模型。采用全细胞膜片钳技术记录INa和Ikr,观察TMCC对INa和Ikr的影响并进行通道动力学研究。采用免疫蛋白印迹技术评价TMCC对Nav1.5通道蛋白的影响。结果:1. TMCC (100,200,400和胺碘酮显著性降低大鼠心室肌细胞INa电流密度峰值。TMCC和胺碘酮均使IN。的电流-电压曲线上移,但不改变其激活电位、峰值电位和反转电位。TMCC和胺碘酮均使INa激活曲线右移,使激活减慢。TMCC及胺碘酮对INa失活曲线的影响是使之右移,失活减慢。2. TMCC (100,200,400μmol·L-1)使大鼠心室肌细胞ICa,L电流密度发生显著性变化,其中400μmol·L-1显著升高钙电流。胺碘酮作用后的电流密度峰值显著性降低。400μmol·L-1TMCC使ICa,L的Ⅰ-Ⅴ曲线下移,100,200μmol·L-1TMCC对Ⅰ-Ⅴ曲线影响不明显,胺碘酮则使Ⅰ-Ⅴ曲线上移。TMCC使钙通道激活曲线左移,激活加快;胺碘酮使曲线右移,激活减慢。TMCC使钙通道失活曲线右移,失活减慢;胺碘酮使曲线左移,失活加快。3.TMCC (100,200,400μmol·L-1)呈剂量依赖性地降低大鼠心室肌细胞Ito峰电流密度峰值。胺碘酮也显著性的降低Ito峰电流密度。TMCC (100,200,400μmol·L-1)及胺碘酮均使Ito激活曲线右移,失活曲线左移。4. TMCC (100,200,400μol·L-1)和胺碘酮对大鼠心室肌细胞的IK1内向及外向电流峰值均无显著性影响。5.缺氧/复氧使大鼠心室肌细胞INa峰值显著性降低,Ⅰ-Ⅴ曲线上移。TMCC(200,400μmol·L-1)和胺碘酮可显著性恢复缺氧/复氧损伤模型减小的INa峰值。TMCC和胺碘酮均可使上移的Ⅰ-Ⅴ曲线下移。与正常对照组相比,缺氧/复氧使钠激活曲线右移,激活减慢,失活曲线左移,失活加快。TMCC(200,400μmol·L-1)及胺碘酮可恢复右移的失活曲线,使失活减慢,但对激活的影响无显著性差异。6.缺氧/复氧使大鼠心室肌细胞ICa,L峰值显著性增加,Ⅰ-Ⅴ曲线下移。TMCC (200,400μmol·L-1)和胺碘酮可显著性恢复缺氧/复氧损伤模型增大的ICa峰值。,LTMCC和胺碘酮均可使下移的Ⅰ-Ⅴ曲线上移。与正常对照组相比,缺氧/复氧使钙激活曲线左移,激活加快,失活曲线右移,失活减慢。TMCC(200,400μmol·L-1)和胺碘酮可恢复左移的激活曲线,使激活减慢,恢复右移的失活曲线,使失活加快。7.缺氧/复氧使大鼠心肌细胞Ito峰值显著性增加,Ⅰ-Ⅴ曲线上移。TMCC(200,400μmol·L-1)和胺碘酮可显著性恢复缺氧/复氧损伤模型增大的Ito峰值。TMCC (200,400μmol·L-1)和胺碘酮均可使上移的曲线下移。与正常对照组相比,缺氧/复氧使Ito激活曲线左移,激活加快,对失活曲线的影响无显著性差异。TMCC (200,400μmol·L-1)及胺碘酮可恢复左移的激活曲线,使激活减慢,对失活曲线的影响无显著性差异。8.缺氧/复氧能使Ik1内向电流峰值显著性降低,内向电流曲线上移,使Ik1外向电流峰值显著性降低,外向电流曲线下移。与缺氧/复氧组相比,TMCC (400μmol·L-1)和胺碘酮可显著性恢复减小的内向电流峰值。TMCC (400μmol·L-1)·和胺碘酮可显著性恢复减小的外向电流。9.在急性作用下,牛磺酸镁对Nav1.5通道的峰电流INa具有浓度和电压依赖性抑制作用,半数最大抑制浓度(IC50)为8.1±0.5μM。TMCC可以使得通道的激活曲线左移,加快通道的激活过程;使通道的失活曲线左移,加快通道的失活过程;显著减缓钠电流从失活状态的恢复速度。在各刺激频率下,给予TMCC,第100次系列脉冲刺激时钠电流并无显著性差异。孵育24小时后,牛磺酸镁并未抑制Nav1.5通道电流,也没有使激活曲线、失活曲线以及失活后恢复曲线发生变化。在10Hz刺激频率下,给予TMCC,第100次系列脉冲刺激时钠电流有显著性差异。(10,100和1000μM) TMCC均抑制Nav1.5通道蛋白,其中1000μM TMCC抑制作用的更显著。10.当TMCC为10mM,其对HERG尾电流的抑制率仅为18.43±0.12%。对浓度效应曲线进行拟合,得出半数最大抑制浓度(IC50)为16.9±1.1μM。结论:1. TMCC通过抑制钠通道的激活和失活而浓度依赖性的抑制钠电流。与胺碘酮相比对钠通道的抑制作用要弱,表明TMCC是一种对钠通道作用温和的化合物。2. TMCC对钙通道呈现双相作用,即低浓度时抑制钙内流,而高浓度则促进钙内流。高浓度的TMCC可能通过促进钙通道的激活和抑制钙通道的失活而促进钙离子内流。3. TMCC通过抑制延迟整流钾道的激活和促进失活而浓度依赖性的抑制Ito。而胺碘酮对1to的抑制作用更强。4. TMCC和胺碘酮对大鼠正常心室细胞的内向整流钾通道均无影响,表明TMCC不易出现导致心律失常的副作用。5. TMCC通过抑制钠通道的失活过程来恢复缺氧/复氧损伤引起的INa峰值减小,使上移的Ⅰ-Ⅴ曲线下移,具有浓度依赖性,但其对激活曲线无影响。6. TMCC通过促进钙通道的失活以及抑制钙通道的激活过程来恢复缺氧/复氧损伤引起的ICa,L峰值增大,使下移的Ⅰ-Ⅴ曲线上移,具有浓度依赖性。7. TMCC可通过抑制钾通道的激活过程对抗缺氧/复氧引起的Ito峰值增大,使上移的Ⅰ-Ⅴ曲线下移,且具有浓度依赖性,但其对失活曲线无影响。8. TMCC可恢复Ik1电流异常,从而抑制因缺氧/复氧诱发的Ik1电流变化,使其恢复至正常水平,其作用与胺碘酮相当。9.在急性作用时,TMCC对Navl.5通道电流具有浓度依赖性和电压依赖性的抑制,主要是通过结合到通道的激活态和失活态而发挥作用的。在慢性作用时,TMCC并未抑制Nav1.5通道电流,也不影响通道动力学,但是对Navl.5通道的作用具有一定的使用依赖性。TMCC对Nav1.5蛋白的作用是抑制合成后的蛋白转运到细胞膜上,其中高浓度的牛磺酸镁抑制蛋白表达作用更明显。10. TMCC对HERG通道电流的抑制作用不明显,说明TMCC在临床应用情况下,可能不会影响心脏复极情况。