论文部分内容阅读
光学探测的高分辨率与雷达探测的全天候工作能力使得光学/雷达双模探测技术成为飞行器精确制导领域的发展重点和前沿技术,其中,具有隐身与电磁屏蔽功能的复合制导窗口的设计与制造成为光学/雷达双模探测的核心技术之一。目前,用于光学制导窗口电磁屏蔽的技术有:金属网栅、ITO导电膜等;用于雷达制导窗口隐身的技术有:频率选择表面(Frequency Selective Surface,FSS)等。金属网栅是一种优良的光学导电薄膜,微米量级的特征尺寸使其能屏蔽雷达波段电磁波,但也因此无法实现雷达波段的带通功能。频率选择表面是一种空间滤波结构,具有带通或带阻功能,是解决飞行器天线罩观通部件隐身难题的最佳技术途径。在光学/雷达双模制导窗口隐身应用中,由于其金属覆盖率过高而影响了其光学性能。因此,设计一种兼顾高透光率、高成像质量以及优良带通滤波特性的新型人工微观结构成为光学/雷达复合制导窗口隐身与电磁屏蔽技术领域研究难点,国内外公开文献在该方面的研究鲜有报道。论文将金属网栅与FSS技术相结合,提出了一种在金属网栅上周期开孔的方法来设计金属网栅与谐振缝隙单元组合的新型微观结构,通过开展光学/雷达双带通频率选择表面设计与应用研究,寻找组合微观结构设计方法使其兼顾高透光率、高成像质量及优良带通滤波特性,优化组合微观结构提高其光电性能,为拓展其应用研究了光学/雷达双带通主动FSS电磁特性。论文主要研究工作如下。为了获得优良带通滤波特性,在设计光学/雷达双带通FSS时必须避免出现金属网栅与FSS谐振缝隙单元的无序交错,论文采用Munk的互导纳理论分析了光学/雷达双带通FSS表面电流谐振模式分布规律,归纳出了金属网栅与FSS谐振缝隙单元组合时的约束条件。按照约束条件设计的组合微观结构既具有金属网栅的高透光特性又保持了在金属屏上周期开孔而成的FSS优良带通滤波特性。由于光学/雷达双带通FSS的光学高透光率、毫米波带通高透射率及低频波段高电磁屏蔽效率三者之间存在着固有的设计矛盾,论文基于Fraunhofer衍射理论建立了光学/雷达双带通FSS的标量衍射模型,分析了光学/雷达双带通FSS特征参数对其衍射光强分布的影响规律,研究了光学/雷达双带通FSS对光学成像系统的光学传递函数、杂散光等光学指标的影响,提出了圆环型金属网栅FSS与叠加金属网栅FSS两种新型光学/雷达双带通FSS用于提高其光电特性。在上述光学/雷达双带通无源FSS研究的基础上,论文进一步探索了光学/雷达双带通主动FSS电磁特性。巧妙地将电控集总元件嵌入组合微观结构表面后,不仅保持了光学全透与雷达带通的功能,而且还利用主动集总元件实现了雷达波段的可调控功能,从而拓展了光学/雷达双带通FSS的应用。在光学/雷达双带通FSS制备方面,论文开展了一系列的制备工艺实验,总结出了不同制备工艺参数对光学/雷达双带通FSS光电特性的影响,并制备出了兼顾高透光率、高成像质量以及优良带通滤波特性的实验样件,测试结果与理论值一致,从而验证了光学/雷达双带通FSS结构设计方法的可行性与准确性。