【摘 要】
:
锂/氟化碳(Li/CF_x)电池是理论能量密度最高的一次电池(~2180 Wh/kg),在军事武器、航空航天、医疗器械等高端领域深受青睐。然而,由于C-F键的共价性极强,氟化碳(CF_x)材料的本征电导率低,并且CF_x的表面能低而使其与电解液浸润性差,因此将CF_x用作电极材料时,容易导致电池极化、容量发挥不完全和倍率性能较差等严重问题,既造成了巨大的能源浪费,也无法满足特定环境中对电池高功率放
论文部分内容阅读
锂/氟化碳(Li/CF_x)电池是理论能量密度最高的一次电池(~2180 Wh/kg),在军事武器、航空航天、医疗器械等高端领域深受青睐。然而,由于C-F键的共价性极强,氟化碳(CF_x)材料的本征电导率低,并且CF_x的表面能低而使其与电解液浸润性差,因此将CF_x用作电极材料时,容易导致电池极化、容量发挥不完全和倍率性能较差等严重问题,既造成了巨大的能源浪费,也无法满足特定环境中对电池高功率放电的要求。为此,本文从碳源结构设计和碳包覆改性两个方面对氟化碳正极材料进行了系统研究。首先,采用催化化学
其他文献
近年来,快充技术作为移动设备电池容量不足、续航性能受限的解决方案之一,受到市场的广泛关注。Flyback反激式变换器因其拓扑简单、电磁干扰低、成本低廉的特点成为各大公司低功耗离线应用快速充能的首选解决方案。然而,传统的Flyback变换器无法有效回收拓扑内部的漏感能量,导致电源整体转换效率偏低,发热较高;此外,Flyback变换器拓扑中的功率硅器件较大的栅极电荷和漏源电荷在高频开关下会产生更高的损
随着消费电子市场的蓬勃发展,促进了以开关电源为代表的电源管理技术的长足进步,而快速增长的物联网和便携式设备等功能繁复的电子系统则对开关电源芯片提出了更加严格的要求。在开关电源电路中,由于结构简单、电压转换灵活,且在输入电压和输出电压之间具有电气隔离等优点,反激式变换器在小功率电源转换应用中是最为常用的一种拓扑结构之一。根据输出电压的直接反馈还是间接反馈,反激变换器有原边反馈和次边反馈之分。次边反馈
在当下发展的各类储能体系中,锂离子电池具有能量密度高和循环性能稳定等优势,已进入移动式与分布式储能应用。但是,锂资源在自然丰度和成本上的劣势限制了其可持续发展。与此相比,钠离子和钾离子电池兼具资源丰富和低成本的优势,在规模化储能领域具有广阔的应用前景。和锂离子(rLi+=0.76 A)相比,钠离子和钾离子尺寸较大(rNa+=1.02 A,rK+=1.38 A),在固体中的扩散速率较慢,也更容易造成
金属锂具有3860mAh·g~(-1)的高理论容量和具有最低的还原电势(-3.040V),被人们认为是锂离子电池终极负极材料。然而锂金属电池却饱受循环过程锂枝晶生长和死锂等一系列问题的困扰。如何缓解锂枝晶和死锂的形成成为亟待解决的核心问题。三维集流体自身具有的骨架结构和高比表面积,意味着材料表面局部电流较小,从而能够缓解死锂和锂枝晶的形成。此外,成核过电位也是导致锂枝晶生长和改变锂沉积形貌的重要原
为了解决日益严重的能源短缺及环境污染问题,发展高效无污染的清洁能源成了世界各国的紧要课题。在各类清洁能源中,氢燃料电池以其高能量密度、无排放和高效率等特点正逐渐成为国际研究热点。氢燃料电池混合动力系统作为氢燃料电池的具体应用,已经在城市客车和其他公共交通领域得到了长足的发展。传统氢燃料电池混合动力系统能量管理策略大多仅考虑了系统的动力性和经济性,而未充分考虑氢燃料电池对工况敏感的工作特性。本文主要
与其他二次电池相比,锂离子电池具有更高的能量密度。然而,目前商业化锂离子电池很难突破300 Wh kg~(-1)能量密度的限制。对于远程电动车辆,高级便携式电子设备以及许多其他应用,非常需要探索能量密度高于300 Wh kg~(-1)的储能设备。FeS_2因其具有高达894 m Ah g~(-1)的理论比容量及1671 Wh kg~(-1)的理论能量密度而被广泛研究,被认为是下一代高能量密度电池正
当前,由于钾元素与锂元素具有非常相似的电化学性能,钾离子电池(potassium-ion batteries,PIBs)逐渐吸引了广泛的研究兴趣。相较于锂离子电池,钾元素地壳含量更高且无地域性限制。从经济角度上出发,钾离子电池是目前极具潜力的电池体系之一。由于钾离子半径更大等问题,目前用于钾离子电池的正负极材料有待更进一步的开发。据已有的报道,部分有机材料在钾离子电池中同样具有氧化还原活性。而且,
自从1991年,第一个商业化锂离子电池(LIB)问世以来,其发展极为迅速,且目前已广泛应用于人类的生产生活之中,用以应对化石资源过渡消耗所带来的能源与环境危机。但有限的锂资源储量引起了人们寻找新型替代品的迫切渴望。钠元素由于其广泛的分布与丰富的储量,使得钠离子电池(SIB)成为有利的替代者之一。但是由于钠原子自身半径较大且充放电的动力学过程缓慢等问题,导致钠离子电池仍处在研究阶段。设计并发展钠离子
硅负极材料因其高理论比容量(3579 m Ah g~(-1))、相对低的脱锂电位(~0.4 V vs Li/Li~+),并且硅在自然界储量丰富,无毒害而被誉为下一代最有前景的锂电负极材料候选者之一。然而硅的导电能力弱,在嵌锂/脱锂的充放电循环过程中会发生较大的体积膨胀(~300%),从而容易造成电极上的裂痕、脱落而出现电气连接问题,随着充放电循环的进行容量会快速的衰减,材料的容量保持率不佳;伴随着
在第三代新型光伏电池中,钙钛矿太阳能电池(perovskite solar cells,PSCs)被认为是最有希望实现低成本发电的有力角逐者。钙钛矿材料独特的晶体结构及卓越的物理化学性质(如低的激子结合能、高的缺陷容忍度和高的载流子迁移率等)吸引了研究者的广泛关注。制备致密均匀、形貌可控的高品质钙钛矿薄膜是获得高效、稳定的PSCs的关键。然而,目前基于溶液法制备的多晶钙钛矿薄膜中存在的众多陷阱态会