论文部分内容阅读
磁流变液(MRF)是一种优秀的智能流体材料,由磁性粒子、基液以及添加剂组成。在无外磁场状态下,磁流变液呈现良好流动性的液体状态;在外加磁场作用下可在短时间(毫秒级)呈现类似固体的状态。磁流变液的这种特性已被广泛应用于航空、汽车、桥梁工程的阻尼控制。作为智能材料的一种,磁流变液的这种特性在智能传感技术中有着广泛的发展前景。目前,磁流变液流体特性、阻尼特性已被广泛研究,但其电磁学特性相对来说研究进展缓慢,本文将研究磁流变液电感特性以及磁流变液磁致伸缩效应。鉴于磁流变液的优良特性,本文还将研究基于磁流变液的智能传感技术。本研究报告主要由两大部分构成:一是磁流变电感以及磁流变液磁致伸缩效应研究;二是磁流变液传感技术研究。主要研究内容包括:1)、研究磁流变液电感特性,本文用磁流变液和电感线圈构成磁流变电感,推导了磁流变电感的计算公式,设计实验测试了磁流变电感随外磁场以及温度的变化规律,并从理论上对实验现象进行了分析。为磁流变电感在电子测量以及传感技术中的智能控制提供了一种依据。2)、研究磁流变液磁致伸缩效应,设计了磁流变液磁致伸缩效应检测装置,运用光学干涉测量方法高精度的测量了磁流变液的磁致伸缩效应,为磁流变液磁致伸缩效应在智能传感技术中的应用提供了重要依据。3)、研究基于磁流变液的加速度传感器,设计了基于磁流变液的加速度传感器,对该传感器进行了仿真分析,结果表明该传感器可实现不同量程的加速度的高精度检测。4)、研究基于磁流变液的自适应光学平台,利用磁流变液的逆磁致伸缩效应对光学平台是否平衡作出判断,原理简单,可以迅速、准确的对平台是否平衡做出判断。如果平台不平衡,通过运算即可得到光学平台倾斜的角度。5)、研究基于磁流变液的抗振模型,提出了基于压电陶瓷与磁流变液的双层隔振模型。通过对该模型进行理论建模分析和仿真,得到该模型不但对高频振动具有隔振效果,而且对低频、超低频微振幅干扰有很好的隔振效果。