阻尼Euler方程以及相关模型真空自由边界问题研究

来源 :内蒙古大学 | 被引量 : 0次 | 上传用户:qfcywm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
流体力学方程是偏微分方程中一个重要的研究对象,常运用于航空航天、气象学、生物学等领域.尤其,物理真空自由边值问题是偏微分方程研究领域的一个难点问题.因为在这种条件下,流体的运动区域随着时间沿质点路径发生变化,并且描述流体运动的系统在自由边界处发生退化.本文主要研究圆柱对称带阻尼项的Euler方程及其相关模型(包括可压Euler方程和可压Euler-Poisson方程)光滑解真空自由边界问题的局部适定性,并且对于阻尼Euler方程、可压Euler方程和可压Euler-Poisson方程真空自由边界问题的相关结果进行综述.第一章是引言,主要内容是描述阻尼Euler方程真空自由边界问题的物理背景,重点综述阻尼Euler方程、可压Euler方程和可压Euler-Poisson方程真空自由边界问题,研究问题的相关结论以及本文的主要结论和技术难点.第二章给出预备知识,在拉格朗日坐标变换下把阻尼Euler方程真空自由边界问题转换成固定边界的初边值问题,并给出相关的先验假设.第三章和第四章分别得到了阻尼Euler方程真空自由边界问题局部光滑解的能量估计和椭圆估计.第五章建立了阻尼Euler方程真空自由边界问题局部光滑解的适定性.第六章简述阻尼Euler方程真空自由边界问题的未来发展设想.
其他文献
本文利用有限元方法结合时间两网格(TT-M)快速算法数值求解耦合Schr(?)dinger-Boussinesq方程组,空间方向采用传统Galerkin有限元方法离散,时间方向采用TT-M Crank-Nicolson格式逼近,进行形成求解方程组的时间两网格有限元数值格式,该算法具体包括三个步骤:第一步,在时间粗网格上求解非线性系统;第二步,通过插值公式,将粗网格系统计算出的解与时间细网格点处的解
学位
<正>山东大学齐鲁医院是国家卫生健康委员会委属(管)的三级甲等综合医院,是首批委省共建国家区域医疗中心的牵头方和主体建设单位。项目始建于1890年,位于济南市历下古城保护区,其作为山东大学附属医院与教学医院,原有的规划布局早已无法满足当下医疗、教学、科研等方面的多重需求。基于这一背景,山东大学齐鲁医院急诊综合楼于2020年启动设计。
期刊
主成分分析作为重要的数据降维工具被广泛地应用于各大领域的研究中.但是随着现代科技的不断进步,人们面对的信息繁冗复杂,需要处理的数据维度越来越高,主成分分析在数据的解释性方面已不能满足时代需求,有时甚至会产生误导信息.为了弥补主成分分析在数据解释性方面的不足,稀疏主成分分析应运而生.它将稀疏性融合到了主成分分析中,不仅可以尽可能多地保留原始数据的信息,而且能够得到稀疏的载荷向量.本文首先在传统主成分
学位
在一般拓扑线性空间中,利用基于改进集E的Gerstewitz泛函Ψq,E及面向距离函数Δ-E等两个函数对向量优化问题的E-有效解、E-弱有效解、E-Benson真有效解及E-严有效解等进行非线性标量化刻画,并给出相应例子对部分结论进行说明.此外,根据已有广义E-Benson真有效解、E-超有效解、E-Henig真有效解、E-强有效解与E-Benson真有效解之间关系的结论,利用函数Ψq,E及Δ-E
学位
图像去噪是数字图像处理中的经典问题,对图像增强和分类等后续图像处理至关重要.为此,研究人员提出了各种强有力的方法来去除图像中的噪声,其中Buades等人提出的非局部均值算法具有里程碑意义.本文讨论图像去噪问题,在统计学意义下提出了一种基于非局部均值和最优权值的图像去噪算法,并进行了相关理论分析与数值实验.首先,根据拉普拉斯噪声分布的统计性质,通过最小化像素估计值的平均绝对误差的严格上界,并利用Ka
学位
在K-S模糊距离空间中建立了(αt,ψ)-压缩不动点定理.作为推论,获得了 K-S模糊距离空间中的ψ-压缩不动点定理,偏序集上的不动点定理,循环映射不动点定理,(?)iri(?)型不动点定理及Dass-Gupta不动点定理.这些结果将许多已有结果建立到了 K-S模糊距离空间.同时在K-S模糊距离空间中建立了非线性(?)iri(?)型拟压缩不动点定理.这一结果推广了 Di Bari和Vetro在距离
学位
图像去噪是图像恢复的基本课题,也是数字图像处理中的一个经典问题.为了从图像中获得准确全面的信息,降噪是必要的过程,也是后续处理和分析图像的关键预处理步骤.基于低秩矩阵复原算法的基本思想是将相似的图像块堆积在一起构造的矩阵是低秩的.因此基于图像块的去噪算法有两个关键步骤,分别是相似图像块的聚类和对每一类图像块组进行低秩矩阵恢复.针对在图像被噪声干扰的情况下如何提高相似块匹配精度和建立合适的低秩矩阵逼
学位
1974年,Caradus给出了 Banach空间上有界线性算子Drazin逆的定义[1].之后,众多学者在此基础上对算子Drazin逆进行了相关研究.众所周知,Drazin可逆算子可以进行空间分解,得到对角分块算子矩阵.2019年,文献[2]首次将Drazin逆推广到线性关系中并给出了线性关系Drazin可逆的定义.本文主要应用空间分解的方法研究了定义在Banach空间上的线性关系的Drazin
学位
本硕士学位论文利用辛叠加方法研究了双参数弹性地基上四边自由和四边固支正交各向异性矩形薄板的自由振动问题,导出了这类薄板自由振动的Hamilton正则方程.针对双参数弹性地基上四边自由正交各向异性矩形薄板的自由振动问题,通过分析边界条件将其分解为对边滑支条件下矩形基础板的两个子振动问题,再利用相应Hamilton系统的分离变量法分别求出这两个子振动问题的基本解,这两个基本解经过叠加得到原振动问题的解
学位
本篇文章主要研究了两类问题:一、基于三阶正则微分算子自伴边界条件标准型的分类,研究了具有自伴边界条件标准型的正则三阶微分算子本征值的依赖性问题,证明了该问题的本征值连续平滑地依赖于区间端点、边界条件标准型的所有参数以及方程的某些系数,进一步得到本征值的微分表达式;二、基于偶数阶边值问题的有限谱以及简单形式三阶边值问题有限谱的研究方法,研究了一类系数中含有复数的三阶边值问题的有限谱,并且得出此问题至
学位