论文部分内容阅读
目前,模具是现代工业生产中不可缺少的重要装备,但模具工作条件较为恶劣,如冷挤压时的单位挤压力可达2000MPa以上,伴随模具内流动的金属与模具表面的剧烈摩擦以致模具温度随之升高,所以常常发生模具氧化、粘模或焊合等现象,加剧了模具的磨损,并降低了模具寿命。因此,选择高耐磨性、高硬度的模具材料已经成为提高模具寿命的一个重要途径。本文从提高金属陶瓷模具材料的综合力学性能出发,采用热压烧结方法制备出较高综合力学性能的Ti(C,N)基纳米复合金属陶瓷模具材料,对材料组分、微观结构、烧结工艺及其与材料综合力学性能之间的关系进行了研究。分析了Ti(C,N)基纳米复合金属陶瓷模具材料的增韧补强机理,并对Ti(C,N)基纳米复合金属陶瓷模具材料的摩擦磨损特性进行了研究。实验研究了纳米ZrO2、微米WC对Ti(C,N)基纳米复合金属陶瓷模具材料力学性能和微观结构的影响,并对Ti(C,N)基纳米复合金属陶瓷模具材料的热压烧结工艺进行了优化,最终制备了综合力学性能较好的Ti(C,N)基纳米复合金属陶瓷模具材料,其抗弯强度为1144MPa、断裂韧性为8.60MPa·m1/2、硬度为14.57GPa,与Ti(C,N)基金属陶瓷模具材料相比,虽然硬度降低,但是抗弯强度和断裂韧性分别提高了16.73%和40.07%。所制备的Ti(C,N)基纳米复合金属陶瓷模具材料中,纳米ZrO2粉体的添加,细化了Ti(C,N)基金属陶瓷模具材料的晶粒,与Ti(C,N)基体形成了“晶内/晶间混合型”结构,形成了穿晶断裂/沿晶断裂混合断裂模式。此外,在纳米ZrO2的相变增韧、裂纹的桥联、裂纹的偏转及分支等各种增韧补强机理的协同作用下Ti(C,N)基纳米复合金属陶瓷模具材料的综合力学性能得到了提高。对所制备的Ti(C,N)基纳米复合金属陶瓷模具材料进行了摩擦磨损性能实验研究,并借助扫描电子显微镜和X射线衍射仪对磨损试样表面进行了微观结构形貌观察与分析,研究了Ti(C,N)基纳米复合金属陶瓷模具材料的磨损机理,其磨损机理主要为磨粒磨损、氧化磨损和粘着磨损,而Ti(C,N)基金属陶瓷模具材料的磨损机理为晶粒的剥落和脆性断裂。最后进行初步的模具制造工艺验证。