论文部分内容阅读
红壤坡耕地是我国南方丘陵区重要的耕地资源类型。长期以来由于降雨、不合理耕作及土壤管理等因素影响,该区域坡耕地水土流失严重,耕层质量和物理性能退化明显,土壤生产力急剧下降且农作物产量低而不稳,严重制约红壤丘陵区农业可持续发展。因此,分析红壤坡耕地耕层质量变化特征及其障碍类型表现,研究不同耕作措施对坡耕地耕层物理性能的差异性影响,有利于红壤丘陵区坡耕地资源持续利用,也是实现红壤坡耕地数量、质量、生态“三位一体”保护的前提和基础。本研究以红壤坡耕地耕层为研究对象,通过小流域尺度坡耕地耕层野外实地调查、地块尺度坡耕地耕作措施定位试验、室内耕作压实模拟试验等综合性研究方法,建立了红壤坡耕地耕层质量诊断最小数据集,划分了红壤坡耕地耕层障碍类型,对比分析不同耕作措施、耕作压实对坡耕地耕层物理特性的影响作用,从保水抗旱、固土抗蚀及地力提升角度,提出三种坡耕地合理耕层调控措施及模式,研究结果可为南方红壤丘陵区坡耕地耕层质量恢复、坡耕地合理耕层构建、农作物生产适宜性调控及水土流失阻控提供理论支持和技术参数。主要研究结论如下:1、红壤坡耕地耕层质量特征及障碍类型红壤坡耕地耕层质量评价最小数据集由耕层厚度、土壤饱和导水率、土壤粘粒、土壤抗剪强度、有机质和有效磷组成。坡耕地耕层质量评价指标适宜性水平差异明显,耕层平均厚度(18.83±4.9)cm接近作物生长适宜厚度;粘粒平均质量分数为(12.28±6.72)%,土壤抗剪强度平均值为(3.78±1.01)kg/cm~2,不合理耕作方式和水土流失造成土壤结构破坏。红壤坡耕地耕层类型可划分为粘重板结型障碍耕层、侵蚀退化型障碍耕层、水分限制型障碍耕层、土壤酸化型障碍耕层、薄化型障碍耕层和无障碍耕层六种。坡耕地耕层主要障碍因素表现为土壤粘粒含量多、pH值小、耕层厚度薄和土壤抗剪强度小。基于坡耕地耕层质量与农业生产、降雨等人为和自然因素间的非线性关系,从耕层退化驱动因素(D)、合理耕层构建环境压力(P)、耕层状态表现(S)、耕层问题影响(I)和耕层调控响应对策(R)五方面,构建DPSIR概念模型。基于DPSIR的红壤坡耕地耕层质量各影响因素间存在明显同向或反向路径关系。R随I反方向变化率为11%;P和I随R的反方向变化率分别为3%和39%,采取积极的响应对策对抑制耕层质量退化、改善耕层质量有重要促进作用。2、耕作措施对红壤坡耕地耕层稳定性变化的影响各种措施下坡耕地耕层土壤团聚体组成均为负偏态分布,免耕坡耕地耕层土壤结构稳定性最强,土壤团聚度明显高于其他措施。>10mm团聚体含量依次为免耕(NT,36.15%)、压实(C,30.74%)、深松+压实(CS,29.28%)、常规翻耕(CK,25.13%)和深松耕作(S,17.33%),10~7cm和7~5cm团聚体含量也表现出类似变化规律。免耕和压实处理对提升坡耕地耕层土壤水稳性作用明显优于其他耕作措施。>5mm水稳性团聚体含量以CK(4.67%)最低,NT(12.43%)和CS(13.65%)最大;>0.25mm团聚体保存几率和水稳定性指数均以C(1.8,2.64)最大,CK(1.3,2.27)最小,这说明压实处理提高了耕层土壤颗粒间密实度,而免耕则对耕层土壤扰动小,结构相对稳定。免耕和压实处理对坡耕地耕层土壤力稳定性增强作用明显高于其他措施。免耕20~30cm耕层土壤抗剪强度(6.13kg/cm~2)最大,深松耕作0~10cm耕层(1.87kg/cm~2)最小;土壤紧实度均值以S(232.01 N/cm~2)最小,C(319.72 N/cm~2)最大。免耕土壤可蚀性K值为0.26,其对提升坡耕地耕层土壤抗侵蚀作用最为显著;其它措施的土壤可蚀性K值分别为CS(0.386)、S(0.426)、C(0.436)和CK(0.472)。耕作深度、耕作方式等多种因素均会对坡耕地土壤抗侵蚀性能产生影响。3、耕作措施对红壤坡耕地耕层土壤入渗及蓄持性能影响深松耕作(S)对坡耕地耕层土壤通气孔隙度、导水功能孔隙度增强效应及土壤入渗性能改善明显要优于其他措施,而压实处理(C)对土壤入渗具有一定滞后性。土壤通气孔隙度主要分布在0~20cm耕层,以S(66.16%)最大,常规翻耕CK(40.52%)和C(39.52%)最低;土壤导水孔隙度依次为S(7.39%)、免耕(NT,6.4%)、深松+压实处理(CS,6.13%)、CK(4.36%)和C(2.51%)。深松耕作坡耕地耕层土壤优先流路径较其他措施明显,S染色面积以5级(5.58%)、7级(7.48%)和9级(6.67%)最大,NT以2级(3.82%)和3级(3.95%)最大。深松耕作对坡耕地耕层土壤持水性能增强作用明显优于其他措施。土壤总库容以S(42.48t/hm~2)最大,C(39.47t/hm~2)最小;土壤实际库容依次为S(342.67t/hm~2)、C(316.07t/hm~2)、CK(315.1t/hm~2)、CS(305.35t/hm~2)和NT(304.61t/hm~2),土壤水库持水效率变化规律也类似。深松耕作坡耕地耕层土壤抗旱性能(4.342)明显优于其他措施,抵御季节性干旱效应显著,而压实处理(-3.191)则由于持水空间不足,抗旱性能较差。4、耕作压实对红壤坡耕地耕层物理性能的影响耕作压实对红壤坡耕地耕层孔隙结构和蓄持性能产生重要影响,从维持耕层土壤蓄持性能角度,坡耕地疏松(容重为1.1g/cm~3)和正常(容重为1.3g/cm~3)耕层耕作压实不宜超过2次。耕层土壤孔隙度、稳定入渗率和最大有效库容均随压实次数呈逐渐降低趋势。随压实次数由1次变为2次、3次和4次,生长季(含水率为20%)正常耕层土壤孔隙度分别为41.78%、38.81%、35.56%和33.57%。在压实次数与容重交互作用下,疏松耕层土壤孔隙度明显大于正常与紧实(容重为1.5g/cm~3)耕层;压实次数与含水率交互作用下,雨季(含水率为25%)、生长季(含水率为20%)和旱季(含水率为15%)耕层压实3次后,土壤孔隙度均趋于稳定。压实2次后,耕层土壤稳定入渗趋近于0,土壤最大有效库容趋于稳定,这会加速犁底层的形成。耕作压实对红壤坡耕地耕层抗侵蚀性能影响显著,从增强土壤抗侵蚀性能角度,坡耕地耕层耕作压实以2次为宜。耕层土壤粘聚力随压实次数、土壤容重和含水率增大而增大;土壤内摩擦角随压实次数和土壤容重增大而增大,随含水率增大呈降低趋势。压实次数与容重交互作用下,疏松耕层压实4次,正常耕层压实3次,紧实耕层压实1次后土壤粘聚力无明显变化。压实次数与含水率交互作用下,旱季、生长季和雨季耕层土壤压实2次后土壤粘聚力趋于稳定。在各容重和含水率水平下,耕作压实3次后,耕层土壤内摩擦角趋于稳定,压实次数是影响耕层土壤内摩擦角的主要因素。耕作压实显著影响红壤坡耕地耕层稳定性能,从维持耕层稳定和作物生长适宜性角度,坡耕地耕层压实不宜超过3次。土壤紧实度随压实次数、容重的增大而增大,随含水率的增大呈减小趋势。在压实次数与容重交互作用下,疏松耕层压实2次后土壤紧实度变化幅度依然较大;压实次数与含水率交互作用下,旱季压实3次后,耕层土壤紧实度变化趋于稳定。压实次数与容重交互作用下,压实3次后耕层厚度趋于稳定。压实次数与含水率交互作用下,压实3次后耕层厚度趋于稳定。紧实耕层在雨季耕层薄化明显,在旱季耕层薄化程度较低。5、不同耕作措施对红壤坡耕地耕层质量调控效应从保水、保土、保肥及增产潜力角度看,红壤坡耕地合理耕层诊断指标适宜性阈值为耕层厚度≥20.39cm,土壤饱和导水率≥6.24mm/min,土壤粘粒为10~71.93%,土壤抗剪强度≥3.16kg/cm~2,土壤有机质含量≥15.23g/kg,有效磷≥58.48mg/kg。不同耕作措施对坡耕地耕层障碍类型的物理性能调控效应具差异性。深松耕作对耕层增厚、土壤水分蓄持性能改良效应明显,S和CS较CK可分别增加耕层厚度45.45%和13.64%,其他措施对耕层厚度无明显效果。压实处理耕层土壤抗剪强度最大(5.81kg/cm~2),而深松耕作耕层土壤抗剪强度较CK降低了39.91%。NT和S对耕层养分改良效应明显优于其他措施。深松耕作对水分限制型和耕层薄化型障碍耕层调控效应最为明显,免耕与压实处理对侵蚀退化型障碍耕层则以调控效果最优,而深松+压实处理对各障碍耕层综合调控效应适中。深松耕作和免耕对坡耕地耕层质量改善效应明显优于其他措施,CK、C、S、NT和CS处理下坡耕地耕层质量指数分别为0.45、0.37、0.58、0.53和0.50。红壤坡耕地合理耕层调控措施有保水抗旱型深松耕作措施,固土抗蚀型水土保持措施,地力提升型绿肥套作措施;因此,从保水抗旱、固土抗蚀和地力提升角度,红壤坡耕地合理耕层构建推荐技术模式为“深松+绿肥+植物篱”。