论文部分内容阅读
铝合金具有密度低、导热导电性能好、耐腐蚀、比强度高,以及可塑性强和制造成本相对较低等优点,在市场上享有广泛的应用范围,尤其是对于质量因素较敏感的航空航天、军事以及汽车制造等领域。目前,随着我国工业的迅速发展,铝合金零部件逐渐呈现出结构轻量化、性能复合化的发展趋势,并且在实际应用中对零件性能和生产效率的要求更高,传统的减材制造技术(如铸造、锻造等)已经难以满足这些制造需求。增材制造技术是一种自下而上的材料逐层叠加制造方法,凭借其特殊的成形方式以及高度灵活性,能够在材料减重和结构减重两方面实现轻量化的目的。目前在对铝合金增材制造工艺的研究过程中,由于铝合金氧化性强、激光吸收率低、凝固温度范围宽等缺点,铝粉表面容易形成坚韧的氧化膜,阻碍成形过程中层间金属连结,降低成形件的致密度,影响成形件的性能。另外,铝粉流动性差,激光反射率高,容易引起成形件内部气孔和裂纹的产生,导致难以大幅提升铝合金增材制造成形件的强度和塑性。针对上述问题,国内外学者开展了大量研究,通过掺杂、工艺优化、热处理等方式改善铝合金增材制造成形件的微观组织和机械性能。目前市场上常用的增材制造铝合金有 Al-Si 系(如 AlSi1OMg、AlSi12)、Al-Cu 系(如 A12024)、Al-Zn系(如A17075)铝合金粉末,用于选区激光熔化增材制造;Al-Mg系、Al-Li系铝合金丝材用于电弧填丝增材制造。掺杂处理包括添加稀土元素(如Sc、Zr等)或者纳米颗粒(如TiC、TiB2、SiC等),用以改善铝合金粉末流动性和致密性的缺陷以及成形件的微观结构,从而提高铝合金增材制造成形件的力学性能。然而,上述方法受到成本高或者冶金工艺复杂等因素的制约,性价比并不高。因此,如何在保证性能的前提下简化工艺、降低成本、提高效率,拓展可适用于增材制造的铝合金粉末已经成为主要的发展趋势。另外,相较于铝合金粉末选区激光熔化增材制造的研究,电弧填丝增材制造研究较少。并且由于热输入量大,成形过程稳定性不高等因素,成形件的微观组织和力学性能难以改善。因此,如何提高电弧填丝增材制造铝合金成形件质量及性能是一个亟待解决的问题。本课题主要研究铝合金粉末材料的选区激光熔化增材制造工艺,采用粉材包括AlSilOMg、A17075及A12024铝合金粉末。将AlSi1OMg通过机械混合法掺杂含量分别为1 wt.%、5wt.%、10 wt.%、20 wt.%的Al-Ti-C-B中间合金,探究纳米级TiC颗粒和TiB2颗粒对增材制造AlSi1OMg成形件的改性作用,旨在细化其微观组织结构,提高力学性能。将A17075通过机械混合法掺杂10 wt.%Al-Ti-C-B中间合金,观察纳米颗粒对增材制造A17075成形件微观组织和力学性能的影响。将A12024通过原位生成法掺杂1.5 wt.%的TiC颗粒,探究该工艺对增材制造A12024组织性能的作用,旨在通过引入变质剂促进形核,改善该合金的可成形性。同时,本课题还对铝合金电弧填丝增材制造进行了一定程度的研究,采用丝材包括Al-Mg合金和Al-Li合金。通过向A15A06成分中添加0.22 wt.%Sc元素探究Sc元素对增材制造铝合金的晶粒细化效果,以及对抗拉强度和延展性的影响。通过对Al-Li合金丝材进行电弧填丝增材制造并对成形件进行固溶时效热处理,探究增材制造工艺以及不同热处理制度对该合金组织性能的影响。实验结果表明,针对铝合金粉材选区激光熔化增材制造工艺,掺杂Al-Ti-C-B中间合金显著细化了 AlSi1OMg合金的微观组织,平均晶粒尺寸降低至3μm以下。细化剂掺杂量在1-5 wt.%时抗拉强度达到500-520MPa,延伸率在12-15%左右。继续增加掺杂量可使晶粒进一步细化,延伸率略有增加,但抗拉强度下降。掺杂Al-Ti-C-B中间合金同样可以抑制A17075铝合金柱状晶生长,转化为精细的等轴晶,消除了各向异性。但由于热裂纹仍然存在,力学性能得不到改善。原位掺杂Al-Ti-C中间合金优化了 A12024铝合金增材制造成形性,消除了微裂纹,但晶粒的细化仍不足以提高该合金力学性能。针对铝合金丝材电弧填丝增材制造工艺,添加0.22 wt.%Sc元素显著细化了 A15A06铝合金的微观组织,得到平均晶粒尺寸40μm的等轴晶,抗拉强度达到290MPa,延伸率达到36%。对于Al-Li合金丝材,增材制造工艺显著改善了其微观组织,由柱状晶细化为等轴晶,固溶处理进一步提高了其抗拉强度和延伸率。