论文部分内容阅读
可降解聚氨酯材料具有分子可设计性强和对环境友好的特点,可以实现对材料性能、降解方式和降解速率的调控,是目前开发生物医学应用新材料的研究热点之一。但是现有合成可降解聚氨酯材料的细胞粘附性能普遍不佳,缺乏生物活性和功能,对其降解性能、降解机理及降解产物的生物相容性等研究有待进一步完善。因此,新的可降解聚氨酯材料的分子设计、合成及功能化改性对于促进其在生物医学领域的应用具有重要意义。本文采用可降解聚酯二元醇、氨基酸、生物基聚醚多元醇和聚乙二醇等原料设计合成了两种不同形态的可降解聚氨酯,并对其成型性能、力学性能、降解性能和生物相容性进行系统研究。在此基础上,将微生物来源多糖、动物来源多糖、植物蛋白和动物蛋白等生物基材料引入合成的可降解聚氨酯中来改善其生物相容性、机械性能和降解性能,并将其应用于3D生物打印、药物缓释和软骨组织再生等生物医学领域,为可降解聚氨酯材料在生物医疗领域的临床应用奠定基础。合成了一系列氨基酸改性的阴离子水性聚氨酯WBPU,研究亲水性扩链剂含量对WBPU结构与性能的影响。与PLA降解性能的对比研究证实,WBPU降解产物无细胞毒性,且不会引起局部酸性产物的积累。将WBPU与熔融生物3D打印技术结合,在50~60℃下成功打印了具有复杂结构的组织工程支架。研究了针头尺寸、挤出速度和微丝间距等工艺参数对WBPU打印成型性能的影响,并对WBPU支架的细胞相容性、血液相容性与组织相容性进行评价。结果显示兔软骨细胞和大鼠成纤维细胞可以在WBPU支架上粘附和增殖,且WBPU支架不会引起溶血作用和明显的急性免疫排斥反应,具有良好的生物相容性。采用BCN、CS、SF和SP对水性聚氨酯进行功能化改性制备复合纳米水凝胶。对不同生物质改性PU材料的力学性能、降解性能、吸水性、亲水性和细胞相容性进行对比研究。结果显示PU/BCN和PU/CS纳米复合材料综合性能相对于单纯PU得到明显提升,而PU/BCN更适合采用低温沉积3D生物打印的方法制备组织工程支架;进一步将打印成型的PU/BCN支架用于巴马香猪弹性软骨缺损修复,结果显示负载细胞的支架植入8个月后,耳软骨处有新生类弹性软骨组织形成,支架材料完全被降解吸收。利用可降解WPU与CS之间的超分子静电相互作用制备了一系列WPU/CS复合膜,研究了复合膜的化学结构、微观形貌、亲水性、热性能、降解性能、血液相容性和细胞相容性。以广谱抗肿瘤药物阿霉素(DOX)为模型药物,设计了一种植入式抗肿瘤药物缓释体系,并考察了该药物缓释体系的DOX负载效率及其在超声控制下的释放行为。体外释放行为和细胞实验证实载药膜的DOX负载效率达到95%以上,其中WPU/CS-KH550-DOX缓释效果最佳,释放速率稳定可控,且抗肿瘤效率与DOX负载量有明显的量效关系。以蓖麻油聚氧乙烯醚(EL20)、IPDI、PEG、大豆分离蛋白(SPI)等为原料合成一系列可注射聚氨酯/大豆蛋白复合多孔支架(PUSF),并研究催化剂比例、发泡剂比例和泡沫稳定剂含量对支架结构与性能的影响。在PUSF支架上培养兔软骨细胞,观察细胞在材料表面的形态并验证软骨细胞在PUSF支架中经培养后软骨特征蛋白的表达;在此基础上,采用优化的PUSF支架负载基质细胞衍生因子(SDF-1),验证SDF-1对BMSCs的募集作用。体外诱导BMSCs迁移能力的测试结果证实PUSF@SDF-1活性支架可以有效诱导BMSCs迁移并且诱导能力与SDF-1的负载浓度正相关。PUSF@SDF-1支架经大鼠皮下植入炎症反应较轻,作为无细胞组织工程支架植入体内是安全的。