面向校园安防的人脸表情识别技术研究与应用

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:dufuyan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人脸表情识别在医疗、教育、游戏、辅助驾驶等领域都体现出了重要价值。近些年不断有新的算法、模型和训练技术被提出,而且已经面向应用场景开发了人脸表情识别系统。本文面向校园安防特定应用场景中安管人员的实际需求:在一些对安全保密性要求更高、闲杂人等不可轻易进出的场所进行人员安全程度的快速度量,将表情作为评价因素对人员安全度进行度量,作为从情绪角度提供安全度的一个探索。实验室中的人脸表情识别模型实现了97%以上的精度,但是由于人脸姿态、灯光、物体遮蔽程度等因素的直接影响,在面向真实场景下的表情分类准确率往往做到50%以上。深度学习的兴起为人脸表情识别提供了新的方向,但卷积神经网络需要较长的训练周期和深层的网络设计,会出现计算量大、梯度弥散等问题。针对以上问题,本文面向校园安防实际应用的需求,旨在提升人脸表情分类准确率的同时,减少参数量和网络层级,满足实际应用的速度要求后实现人脸表情识别系统,验证工程实践的落地成果,主要工作和创新点如下:1、人脸表情识别的图像来源于闸机、摄像头等设备,在对数据的预处理方面,通过搭建训练SSD模型进行人脸检测,用于将人脸从图像中提取出来,随后搭建和训练了SENet和Res Net结合的模型用于人脸特征关键点检测,得到人脸关键特征点并进行人脸对齐。得到人脸特征关键点之后,用SVM方法进行了人脸表情传统几何特征的提取和分类,实现了具有良好效果的人脸表情识别模型。2、为满足应用场景的模型轻量化、快速化需求,针对目前卷积神经网络结构复杂、层数过多计算速度慢的问题,提出了一个结合了点卷积层、平均池化层和大卷积核的基于二维卷积神经网络的改进轻量级表情识别方法。该方法的优点是在达到主流表情识别率的同时,网络层级较浅,参数量和模型尺寸较小,训练时对计算速度和资源要求较低,在Jaffe、CK+两个数据集上相比于原始CNN识别准确率提升了1.21%、1.76%,在FER2013数据集和其他主流算法对比也实现了不错的效果。3、面向校园安防应用场景,以表情识别结果作为评价因素设计了进出人员安全度评价算法,算法采用模糊评价方法对人员安全程度这类比较不清晰的问题给出定量化的评价。以上述训练的轻量级表情识别模型为基础,通过闸机、摄像头等获取人脸图像数据进行表情的预测,然后将预测结果作为评价因素进行人员安全度评分的计算,最后得到评价结果并输出显示,实现了人脸表情识别系统,为当代高校安全管理提供一条新的思路和方案,提高了安全管理智能化水平。
其他文献
作为数据分析中的一项基本功能,时空范围查询能够给数据分析者提供更丰富的分析手段。空间范围查询功能是对分布在各个区域内数据进行分析的一种手段,时间范围查询功能则能够对于特定时间段中的数据进行查询。然而,目前很多数据中包含用户的敏感信息,在查询的过程中可能会造成用户的隐私泄露,因此导致很多用户不愿分享自己的数据。目前虽然有工作对隐私保护的范围查询进行了研究,但现有的隐私保护的空间范围查询方案都只支持规
学位
电子信息产业的飞速发展对半导体器件的性能提出了更高的要求,例如,大功率、高速半导体器件要求具有低的导通电阻、高的反向击穿电压和较快的响应速度。除了这些基本特性要求,非常规极端环境下(高温、高压等)的应用场景对器件可靠性及寿命提出了更高的要求。以GaN和Si C为代表的第三代宽禁带半导体材料具有高禁带宽度和高迁移率的优势,所制备的大功率器件在高温、高压等极端环境应用上表现出高性能。与Si C材料相比
学位
科技期刊作为科研成果的重要载体,是体现科技创新成果、传播科学方法和服务社会发展的重要平台。尽管一些代表性期刊如《遥感学报》《光子学报》在互联网媒体融合时代取得了转型升级的良好效果,但总体上,我国科技期刊发展还是呈现“小、散、弱”的形态。我国科技期刊的传播渠道大多还停留在自建网站或App的阶段,访问量不尽如人意。如何利用计算机前沿技术,整合现有的期刊媒体资源,帮助期刊社寻找受众,从期刊社角度实现论文
学位
在高频高压大功率等电子电力器件领域,Ⅲ-Ⅴ族氮化物半导体因拥有较宽的禁带宽度、高击穿电场和极化效应等优点,得到了广泛的应用。在Ⅲ-Ⅴ族氮化物半导体中,GaN材料和器件的研究现最为成熟,而现如今氮化铝(AlN)材料和器件的研究方向主要集中在制备工艺,AlN器件方向尚有些许空白。其中的铝镓氮(AlGaN)可视为GaN与AlN的过渡材料或二者的三元合金化合物,因此其禁带宽度、击穿场强等各项性质可根据Al
学位
氮化镓(GaN)作为宽禁带半导体材料,具备超高的电子迁移率,且介电常数小、击穿电压大,因此在集成电路领域内成为研究热点,有着广泛的应用前景。尤其是AlGaN/GaN SBD,因其较高的开关频率、较低的开启电压、以及极化效应产生的高浓度二维电子气,使其有望成为高性能直流(DC)和射频(RF)功率二极管的理想器件[1]。尽管上述提到的二维电子气沟道中电子理想迁移率能达到2000 cm~2/(V·s),
学位
scRNA-seq(单细胞RNA测序)作为一种能够将测序分辨率精准到个体细胞的测序技术,对揭示细胞异质性具有重要作用,细胞身份的识别也对下游的分析有很大贡献。对单细胞进行聚类,主要是通过对单细胞基因表达的相似性进行识别。单细胞数据具有高维度、高稀疏性的特点,针对这些特点,已经有大量的单细胞聚类算法产生,在聚类的准确度方面已经取得了很好的成果。但随着单细胞数据规模的不断增长,对单细胞数据聚类算法提出
学位
多重网络数据表示了实体之间复杂的多样性联系,在社交领域、生物医学领域、电力交通领域等一系列的领域中广泛存在着。图表示学习,也称为网络表示学习,旨在将图上的拓扑结构信息嵌入到向量空间中,把每一个节点表示为低维分布式的实值向量。图表示学习能够更加有效地解决节点分类,链路预测等任务,因此受到了越来越多研究者的关注。在多重网络数据中,不同关系(不同层)的拓扑结构在不同方面刻画了实体与实体之间的联系。为了更
学位
随着科学技术的快速发展,航空航天等大型项目的运行成本越来越高,云仿真在降低运行成本、提高演习效率等方面起到了重要作用,成为了大型项目实现测试评估的重要技术。但是在进程高并发、资源需求量巨大的场景下,为保证仿真任务顺利运行,就需要将单个计算节点无法承担的任务调度到其他空闲的计算节点中,因此需要一种合理的仿真资源智能调度技术去解决仿真任务与仿真资源之间的供需关系。目前解决仿真资源智能调度问题的主要方法
学位
交通智能化已成为一种趋势,自动驾驶作为智慧交通的重要一环和加速汽车行业发展的重要技术,得到了国家越来越多的重视和支持。车载摄像头采集到的道路影像辅以目标检测技术,能够为辅助驾驶系统提供必不可少的视觉感知,交通环境中的道路目标检测有着重要的研究意义。如今目标检测技术快速发展,常规道路场景下的检测已不成问题,但在一些复杂的交通场景中,目标存在密集、遮挡以及目标尺寸差距较大的情况,容易出现严重漏检,检测
学位
互联网内容和设备的快速增长以及云计算和大数据处理技术的飞速发展,使得传统网络愈发不能满足用户对灵活路由的需求。软件定义网络(Software-defined net-working,SDN)通过将控制平面和转发平面分离,给网络带来了可编程的特性,实现了路由自定义和网络自配置。SDN主要由应用平面、控制平面和转发平面三部分组成,控制平面由一定数量的控制器构成,控制平面和转发平面需要进行大量的通信以控
学位