论文部分内容阅读
半导体量子点由于其优异的单分散性、均一度以及尺寸可调等特点而在基础研究与应用中倍受科研工作者的瞩目,基于量子点太阳能电池有可能超越传统硅基电池28%的极限理论转换效率而被广泛研究。量子点的单分散性、尺寸、形貌都能够影响半导体量子点以及太阳能电池的电池性能,因此发展合适的化学方法制备高质量量子点是推动量子点太阳能电池走向应用化、规模化的前提与基础。目前通常使用高温热注射法及在此基础上的一锅法等改进方法来合成量子点,但是这些方法一般都使用了毒性较大或者价格昂贵的药品作为反应试剂。因此,发展一些反应条件温和、反应成本低廉、环境污染小、易规模化生产的高质量量子点显得尤为重要。我们尝试着通过一些温和的反应合成CdS量子点,并将其用在聚合物/量子点杂化太阳能电池中。本论文取得的研究成果如下:1.研究了反应条件对量子点合成的影响,提出了柴油体系量子点的优化条件。在此基础上发展了一种新型柴油体系的CdS量子点绿色合成路线(200℃),以CdO作为镉源,以硫粉作为硫源,商用0#柴油作为溶剂,油酸(OA)作为配体制备缺陷峰不明显、带有纳米簇(325nm)的高质量蓝光硫化镉量子点。2.通过热溶剂法在廉价的0#商用柴油中合成单分散好、结晶性高的优质CdS量子点,并将其掺杂在3-己基噻吩聚合物(P3HT)、富勒烯衍生物(PCBM)混合结构中作为光敏层制成聚合物/量子点杂化结构太阳能电池,掺杂单分散CdS量子点后的太阳能电池比未掺杂光电转换效率(PCE)有25%的提高,另外短路电流、开路电压、填充因子分别为Jsc=7.23mA/cm2,Voc=0.61V,FF=57.0%。优异的电池性能归功于掺杂CdS量子点后电池对350-550nm波长的太阳光吸收有所增强,并使得短路电流有显著提高。