论文部分内容阅读
将微电网运行的经济性和环保性作为目标进行优化调度,可促进两者的协同优化。在算法上,传统多目标粒子群算法(MOPSO)采用拥挤距离法寻找集群最优解,局部性强而全局性较差。为此,首先构造了引入模糊相似矩阵的多目标粒子群算法(FMOPSO),以提高算法的全局性;然后综合两算法的优点,提出了混合策略下的多目标粒子群算法(HSMOPSO)。结果表明:将一欧洲典型微电网作为优化调度对象,采用HSMOPSO算法求得的非劣解集不仅更贴近真实的Pareto最优前端,且分布广而均匀,并且具备良好的多样性;在微电网中引入储能技术后,优化结果更靠近坐标原点,实现了Pareto改善。研究结果验证了所提优化算法兼具良好的局部搜索能力与全局搜索能力,同时也论证了引入储能技术可显著促进微电网经济与环保的协同优化。