以“小平安”夯实“大平安”

来源 :广西法治日报 | 被引量 : 0次 | 上传用户:cr_idealism
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
乔叶作为具有代表性的河南女性作家之一,在小说创作上取得了丰硕的成果,始终以散文化的笔触关照着城乡双重空间。乔叶书写着走异路、逃异地、寻求别样生活的人们,书写着人们往返于城乡之间的个体经历与情感记忆。他们是城市的边缘人与乡村的局外人,在乡意味着不甘,离乡代表着艰辛,归乡伴随着无奈或是疏离之感。无论是逃离或回归,在路上的人们依然与乡村有着千丝万缕的关系。本文将从原乡与他城入手,将作品置于空间之中,通过
学位
报纸
宏观上讲,近年来,在大批新锐建筑师的推动下,以复杂自由曲面为表面特征的数字化建筑设计倍受追捧。特别是当代中国,建筑市场流行“求新、求异”,复杂形态建筑项目越来越多,趋向于呈现出形体复杂化、构建非标准化、项目信息多样化等特征。不过复杂形态建筑所带来的可能性的增加并没有随着几何教育的深入而被深化理解。建筑设计中对复杂自由曲面网格的把控力不足的事实,加之碎片化、粗旷式的建造方式,导致复杂曲面在建造过程中
学位
期刊
Chernoff型不等式是重要的几何不等式之一.本文主要以平面星体为研究对象,运用傅里叶级数,研究了对偶Chernoff型不等式的推广与稳定性估计.除此之外,本文还研究了Banach空间中完备集的一类构造方法.具体如下:(1)对于平面星体,在Zhang-Yang的对偶Chernoff-Ou-Pan不等式的基础上,对其进行推广,并建立了对偶Chernoff-Ou-Pan不等式的推广形式.同时,得到了
学位
Newton法和Gauss-Newton法是求解非线性方程组的经典方法,然而当Jacobian矩阵奇异或近似奇异时,这两种方法却可能失效.为了克服这个缺点,Levenberg 和 Marquardt 分别独立地提出了 Levenberg-Marquardt 方法,该方法通过加入一个参数μk使得JkTJk+μkI为正定矩阵,有效地避免了上述缺点.为了有效利用已知函数值,Yamashita和Fukus
学位
布尔函数作为设计序列密码和分组密码的重要组件,其密码学性质的好坏直接关系到整个密码系统的安全性.Bent函数是非线性度最高的布尔函数,它在相对差集理论中有着重要应用.随着深入研究Bent函数,各种Bent函数的推广形式也随之而来.本文主要研究2k-bent函数与μp-bent函数的性质和构造,得到的成果如下:(1)研究了布尔函数的2k-相关函数和2k-Hadamard变换的性质.首先,给出了任意四
学位
设K是欧氏平面R2中光滑的严格闭曲线γ围成的凸域,记A(K)为K的面积,rK(θ)为γ的曲率半径.2009年,周家足等证明了平面上的Ros不等式,该不等式与下面的不等式等价,∫02πrK2(θ)dθ≥2A(K),等号成立当且仅当K为圆盘.本文将围绕等价的Ros不等式做以下研究.首先,通过欧氏平面R2中凸域的支撑函数,研究两条严格凸曲线的混合Ros型不等式,进一步利用凸体间的L2度量获得该混合Ros
学位
随着最优化问题在科学、工程、经济学等领域中的应用越来越广,发展优化算法也越来越重要.而Levenberg-Marquart(LM)方法是经典优化算法之一,也被广泛应用到其他领域中,例如图像问题,数据处理等领域.然而随着问题复杂度的提升,现有的LM算法在数值计算中难免存在效率不高等不足.本文提出两种新的修正的LM方法,在一定假设条件下,我们对修正的LM方法的收敛性进行研究,得到以下成果:(1)提出新
学位
信赖域方法具有可靠性和全局收敛性,被广泛应用于无约束优化问题的求解.信赖域方法中,信赖域半径更新策略对算法性能影响很大.本文基于R-函数,构造了两种调节信赖域半径大小的新策略,给出了两种新型自适应信赖域算法,证明了算法的全局收敛性,数值实验结果表明算法有效.全文工作安排如下.第一章,首先介绍了问题的背景和意义,以及信赖域方法的相关基础知识;其次对信赖域方法在国内外的研究现状进行了阐述,主要内容包含
学位