论文部分内容阅读
针对间歇过程划分阶段方法很少考虑过程的时序性和动态特性,易将时间上不连续但具有相似特征的样本划分到同一阶段,影响建模精确性的问题,提出一种基于信息增量矩阵-偏最小二乘(information increment matrixpartial least square, IIMPLS)的多阶段间歇过程质量预测方法。将历史三维数据沿批次方向展开为二维数据,将其切分成融合质量变量的扩展时间片,依据扩展时间片的信息增量使用滑动窗划分阶段,对各个阶段内数据建立PLS模型进行质量预测。该方法考虑变量之间的相关关系沿采样