论文部分内容阅读
Network-on-chip (NoC) is a new design paradigm for system-on-chip intraconnections in the billion-transistor era. Application specific on-chip network design is essential for NoC success in this new era. This paper presents a class of source routing switches that can be used to efficiently form arbitrary network topologies and that can be optimized for various applications. Hardware description language versions of the networks can be generated automatically for simulations and for syntheses. A series of switches and networks has been configured with their performances including latency, delay, area, and power, and analyzed theoretically and experimentally. The results show that this NoC architecture provides a large design space for application specific on-chip network designs.
Network-on-chip (NoC) is a new design paradigm for system-on-chip intraconnections in the billion-transistor era. Application specific on-chip network design is essential for NoC success in this new era. This paper presents a class of source routing switches that can be used to efficiently form arbitrary network topologies and that can be optimized for various applications. Hardware description language versions of the networks can be generated automatically for simulations and for syntheses. A series of switches and networks has been configured with their performances including latency, delay, area, and power, and analyzed theoretically and experimentally. The results show that this NoC architecture provides a large design space for application specific on-chip network designs.