论文部分内容阅读
在前人研究成果的基础上,研究BP神经网络模型和灰色系统理论的原理,依据它们的适用条件及优缺点,对同一已知边坡取不同样本区间建立GM(1,1)模型,得到不同的预测结果。将多个灰色预测的结果作为输入变量,使用BP神经网络进行组合,输出组合预测结果。提出基于灰色神经网络范例推理的边坡稳定性评价方法,针对边坡稳定性影响因素的复杂多变性和相当强的不确定性,建立了边坡范例检索模型。通过对边坡稳定性因素的灰色模型预处理,以及边坡范例的神经网络学习,最终实现边坡稳定性评价。