论文部分内容阅读
针对现有人工免疫网络算法对先验知识应用不足的问题,提出一种基于模糊人工免疫网络的有监督学习数据分类方法.首先采用模糊C均值聚类算法为免疫网络提供疫苗(初始种群),将此疫苗作为免疫网络的初始抗体群,种群再经过克隆选择、网络压缩、免疫成熟、记忆等算子的不断扩展和压缩,形成一个由浓缩后的训练数据构成的抗体网络,最终基于该抗体网络采用“邻近原则”构造分类器.由于各算子的协调作用,该方法能够在高浓缩率的情况下更好地代替样本空间.UCI(University of California,Irvine)数据集的仿真实验