【摘 要】
:
Diabetic neuropathy is a prevalent microvascular complication of diabetes mellitus, affecting nerves in all parts of the body including corneal nerves and peripheral nervous system, leading to diabetic corneal neuropathy and diabetic peripheral neuropathy
【机 构】
:
Yong Loo Lin School of Medicine,National University of Singapore,Singapore,Singapore;Singapore Eye R
论文部分内容阅读
Diabetic neuropathy is a prevalent microvascular complication of diabetes mellitus, affecting nerves in all parts of the body including corneal nerves and peripheral nervous system, leading to diabetic corneal neuropathy and diabetic peripheral neuropathy, respectively. Diabetic peripheral neuropathy is diagnosed in clinical practice using electrophysiological nerve conduction studies, clinical scoring, and skin biopsies. However, these diagnostic methods have limited sensitivity in detecting small- fiber disease, hence they do not accurately reflect the status of diabetic neuropathy. More recently, analysis of alterations in the corneal nerves has emerged as a promising surrogate marker for diabetic peripheral neuropathy. In this review, we will discuss the relationship between diabetic corneal neuropathy and diabetic peripheral neuropathy, elaborating on the foundational aspects of each: pathogenesis, clinical presentation, evaluation, and management. We will further discuss the relevance of diabetic corneal neuropathy in detecting the presence of diabetic peripheral neuropathy, particularly early diabetic peripheral neuropathy; the correlation between the severity of diabetic corneal neuropathy and that of diabetic peripheral neuropathy; and the role of diabetic corneal neuropathy in the stratification of complications of diabetic peripheral neuropathy.
其他文献
短链脂肪酸(SCFAs)是一类含有1~6个碳原子的饱和脂肪酸,主要由肠道内特定菌群通过发酵膳食纤维产生,对维持肠道内环境稳态发挥重要作用.近年来研究表明SCFAs可调节糖脂代谢、调节能量平衡、维持肠道屏障、减轻炎性反应,并通过上述多途径参与2型糖尿病、肥胖、脂代谢紊乱、非酒精性脂肪性肝病等代谢性疾病的发生与发展.本文总结了SCFAs调控代谢的机制及其防治代谢性疾病的研究进展,旨在为代谢性疾病的防治提供更多参考资料.
Extracellular vesicles are composed of fragments of exfoliated plasma membrane, organelles or nuclei and are released after cell activation, apoptosis or destruction. Platelet-derived extracellular vesicles are the most abundant type of extracellular vesi
Graphene and graphene-based materials have the ability to induce stem cells to differentiate into neurons, which is necessary to overcome the current problems faced in the clinical treatment of spinal cord injury. This review summarizes the advantages of
The neuropsychiatric disease named obsessive-compulsive disorder is composed by obsessions and/or compulsions. Obsessive-compulsive disorder etiologies are undefined. However, numerous mechanisms in several localizations are implicated. Some studies showe
The incidence of neurodegenerative diseases is increasing due to changing age demographics and the incidence of sports-related traumatic brain injury is tending to increase over time. Currently approved medicines for neurodegenerative diseases only tempor
Cell-based models are a promising tool in deciphering the molecular mechanisms underlying the pathogenesis of neurological disorders as well as aiding in the discovery and development of future drug therapies. The greatest challenge is creating cell-based
The study of respiratory plasticity in animal models spans decades. At the bench, researchers use an array of techniques aimed at harnessing the power of plasticity within the central nervous system to restore respiration following spinal cord injury. Thi
Interleukin-27 is a pleiotropic cytokine that is involved in tissue responses to infection, cell stress, neuronal disease, and tumors. Recent studies in various tissues indicate that interleukin-27 has complex activating and inhibitory properties in innat
Recent findings have implicated inflammatory responses in the central nervous system in a variety of neuropsychiatric and neurodegenerative diseases, and the understanding and control of immunological responses could be a major factor of future therapeuti
Injuries to the central nervous system (CNS) such as stroke, brain, and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration. The brain has a surprising intrinsic capability of recoveri