论文部分内容阅读
提出了一种从连续值属性决策表中获取知识的方法KACVA(Knowledge Acquisition from decision tables containing Continuous-Valued Attributes).该方法将经典粗糙集理论对数据空间的等价划分转换为相似划分,把传统粗糙集理论中正域的表示方法扩充到连续值属性决策表中;通过计算连续值属性决策表中各条件聚类对决策类的分类能力,生成决策规则.不同数据集的实验测试结果表明:对连续值属性决策表中的知识获取,KACVA方法与传统的粗糙集相关知识获