建筑中的生物智慧

来源 :科学之谜 | 被引量 : 0次 | 上传用户:sdrtgwdrtwertwert
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  模仿自然界生物的运作方式,能够为人类节约10倍、100倍甚至10000倍的资源。
  蛛丝和火甲虫
  位于蜘蛛腹部的腺体可分泌出6种不同的细丝原料,编织在一起变成蛛丝。这种丝线具有独特的高强度与延展性,比所有人造纤维都要强韧。一位材料学家形象地描述蛛丝的强度和韧性:“如果用铅笔杆粗细的蛛丝来结张大网,这张网甚至可能拦截住一架飞行中的波音747。”
  在人造纤维中,最接近蛛丝特性的纤维材料叫做芳纶纤维,虽然其韧性仍不及蛛丝,但强度可与蛛丝相媲美。然而,要造出芳纶纤维,需要极端的压力和极高的温度,会严重污染环境。而相比之下,蜘蛛却能在再普通不过的环境中,在常温常压下利用死苍蝇和水作原料轻松造出这类纤维。
  一种黑色火甲虫拥有不同寻常的“红外探测器”。“探测器”薄薄的角质层中充满了水,当外界温度升高,角质层中的水会突然膨胀,膨胀带来的压力变化随即会被高敏感的机械感觉细胞所感知。利用这个原理,火甲虫可以探测到远在80千米外的森林火灾,功力大约是人造火灾探测范围的10000倍。更重要的是,这个小家伙不需要电线,不需要连接使用燃料的发电机,格外节省资源。
  火箭、超级计算机、卫星、太空站、人工智能……尽管现在,人类科技已高度发达,但从蛛丝和火甲虫的例子可看出,我们依然需要向大自然取经,达到提高基本资源使用率、循环利用资源的目的。
  泡泡建筑
  植物和动物细胞里充满了气体或液体,借鉴细胞这个原理,建筑师设计出了一系列新颖别致的充气充液的体育建筑。这样的建筑明亮透气,结构曲线自然优美,且绿色环保。
  与细胞原理类似的,还有肥皂泡的“泡泡建筑”。“泡泡建筑”不仅明亮透气,还可以通过改变泡泡直径,以适应任何凸凹不平的地面,摆脱地面形态的限制。也就是说,建筑师能够在任何复杂地面上,“吹”出自己的“泡泡建筑”英国建筑设计师迈克尔·波林和伙伴们在“伊甸园计划”中就发挥了泡泡不挑地面形态的优势。
  在“伊甸园计划”项目中,建筑师们需要建立一个巨型温室。温室所处的建筑环境异常复杂,不仅不规则,而且还在不断变化,因为当地仍在不断开采当中,他们便采用了“泡泡建筑”。“泡泡”结构既能很好契合当地地形特点,减少地形不确定带来的麻烦,又能保证建筑的采光设计达到最优。
  不过,粗略地确定“泡泡”形状远远不够。真正的肥皂泡泡外表面是巨大的球面结构。总不能粗暴地用巨大的空心玻璃球吧?这在技术上几乎无法实现。于是,他们将球状曲面看成由若干个有规则“小泡泡单元”相加起来的组合。这样一来,设计圆顶的问题就转变为寻找支撑性更强的小部分的几何图形问题。
  花粉、放射虫和足球烯
  究竟什么样的多边形拼起来才能够组成一个巨大的、近乎完美的球形曲面呢?科學家把大自然看作样本,参考一些生物精妙的结构设计来制定计划,既方便,又靠谱。
  在显微镜下,花粉颗粒是由六边形组成的球体。足球烯也是这样,足球烯是碳元素的一种同素异形体,分子结构为球形32面体,由60个碳原子通过20个六元环和12个五元环连接而成,像一只足球。放射虫,一类浑身上下长满骨针和伪足的海洋单细胞动物,它们外形结构十分精美灵巧,堪称“天然的艺术形态”,同样有五边形和六边形组成的球状结构。
  受这些自然生物的启发,建筑师团队选择了正五边形和正六边形这两种最简单,拼合后最接近于球体的结构作为小泡泡单元。而计算机数值模拟也支持了这一结论。并且,善于观察的建筑师又学习了蜻蜓透明翅膀的结构特点,成功解决了小泡泡单元之间的链接问题,极大地缩减了钢材的使用数量,节约了资源。
  意外收获
  不过,要想更高效使用资源和能源,必须重新考虑制造“小泡泡”单元的材料,因为玻璃延展性不高,无法将六边形单位面积做到最大。同时,又考虑到温室封闭式薄膜的特点,建筑师最终决定采用可替代玻璃的一种高强度聚合物材料ETFE。他们把这种材料做成三层,将边缘处焊接起来,然后充气。
  这种多层材料的单元面积能够达到玻璃的7倍大,重量却仅为双层玻璃的百分之一,所用材料也仅为双层玻璃的百分之一。而且,新结构又进一步缩减了单元与单元连接处使用的钢材数量。少一些钢材,就多一些阳光进来。
  巨型温室收工时,建筑师欣喜地发现,温室上方圆顶的总重量甚至低于室内空气的重量,轻飘飘的,是个名副其实的“泡泡屋顶”。
  从自然生物那里学到的技巧,不仅能实现同样的功能,而且还可以达到事半功倍的效果。实际上,大自然有数不清的生物,都可以供建筑师参考。
  动物骨架和大树
  20世纪30年代,一位西班牙建筑师曾在巴塞尔市的一次建筑任务中突发奇想,仿照动物身体的骨架,改造了咖啡厅天花板上的钢架设计。这种模拟生物骨骼结构的建筑取得了良好的效果,不仅符合受力特性,而且还具有赏心悦目的外观。
  1992年国际博览会的科威特展览馆,其屋顶是可自由闭合的结构,也是模仿动物关节设计而成的。在夜间,屋顶可以敞开,露出布满繁星的天空,供人类进行各种聚会活动。
  在结构设计生物模拟方面,树状结构也是建筑师常用来参考的结构,因为比较简单。许多建筑师仿照树状结构的特点,在房屋中央设置主要的承重结构,四周则模仿树杈的生长机理,设计成悬空的楼板,外表用幕墙装饰,造出的建筑别有一番风味。
  这个既美丽又高效的世界值得我们不断探索。
其他文献
最近,在澳大利亚维多利亚附近,出现了一群“喝醉”的袋鼠。它们走路摇摇晃晃,像是喝高了。这些袋鼠到哪儿偷喝了酒呢?  其实,它们并没有喝酒,而是吃了一种名为“水虉草”的野草。這种草带有神经毒素,会导致袋鼠神经系统受损,从而出现头部颤抖、摇晃,并逐渐失去运动功能的症状。看似好玩的“袋鼠醉酒”后面其实潜藏着巨大危险,中毒后的袋鼠最终可能会死亡。  这种野草并不是本地生长的种类,而是当地农民引入的牧场作物
期刊
民主,在现代人类社会备受推崇,几乎每个国家都在不断地完善本国的民主制度。但是,你知道吗?民主并不是人类的专属,动物也民主,而且它们的民主制度精彩而有趣。从飞禽到走兽到昆虫再到鱼类,都有不同模式的民主。  挥动翅膀的民主  天空中掠过一群灰扑扑的鸽群,它们灵活地转变方向,划出优美的弧度。鸽群中总有领航者,引导着飞行的方向。但是,领航者并不是固定的某只或是某几只鸽子,鸽群中,每只鸽子都有成为领航者的可
期刊
你知道吗?蜘蛛也会飞,它们甚至能够飞行数百千米的距离。你是否觉得不可思议,没有翅膀的蜘蛛是如何飞行的呢?  剛孵化出来的小蜘蛛能够“飞”一点儿也不稀奇,因为它们很轻,风一吹,小蜘蛛便能乘风而起。但有的大蜘蛛也能飞,一般的风根本不足以将大蜘蛛刮飞,它们是怎么做到的?  为了解决这个问题,科学家找来一些体型较大的成年蟹蛛进行观察。首先,它们先吐出一些2~4米长的丝,这些丝四散开来,像张开的床单,其中有
期刊
行星气味怎么“嗅”  科幻动画片《飞出个未来》中,休伯特·法恩斯沃斯教授,这位186岁的发明家发明了“嗅测镜”。这种仪器的外观和天文望远镜没有多大差别,用途也没什么区别,都是用于观测天体,只不过天文望远镜用眼睛,而“嗅测镜”用鼻子。在这一集中,主人公弗莱用“嗅测镜”嗅到木星闻起来像草莓,当然这是动画片中的场景,而在现实中,科学家们的确在探测行星的气味,只不过用的可不是“嗅测镜”。  想要像动画片中
期刊
大约30亿年前,地球上本无氧气,使地球由无氧环境转化为有氧环境的是能够制造氧气的细菌,蓝细菌便是其中之一。这种古老的生物把地球变成了适合生命生存的环境,现在,科学家想借助蓝细菌来将火星打造成适宜生命生存的富氧星球。  藍细菌有顽强的生命力,即使在恶劣的环境如温泉、盐湖、贫瘠的土壤、岩石表面中也能生长。科学家还注意到,在极深的海沟中同样有蓝细菌的踪迹,在如此昏暗的环境中,蓝细菌是如何进行光合作用的呢
期刊
地球是个大雪球  20世纪以来,地球温度不断攀升,预计到2100年为止,全球气温将上升大约1.4至5.8℃。全球变暖成为全人类面对的问题。但你知道吗?在迄今约7.5亿到5.8亿年前,地球曾经是个大雪球,从赤道到两极全是皑皑白雪。  那么,“雪球地球”是如何形成的呢?  “雪球地球”形成的最直接原因是8亿年前,地球上的二氧化碳突然减少。而二氧化碳为什么会突然减少,目前科学家还没有统一的定论。二氧化碳
期刊
在物理学中,常常有理论先于发现的情况。1916年,爱因斯坦提出“引力波”的概念,直到100年后,人类才真正探测到引力波。而有一些概念就没有引力波那么幸运了,迄今为止仍然只是理论,夸克星就是其中之一。  20世纪60年代,有科学家提出“夸克星”的概念,到目前为止,却仍然没人能在浩瀚的宇宙中证实夸克星的存在。但科学家没有放弃,一直试图在茫茫宇宙中找到它。  想要找到夸克星,首先要了解什么是夸克星。  
期刊
火星往事  地球无疑是幸运的,有厚厚的大气层,有水,有适宜的温度,生命得以在此繁衍生息。  获益的我们应该感谢地球的磁场,试着想象一下如果没有地球磁场,地球会是什么模样?大概大气早被太阳风剥离了,地球会变得干燥寒冷,生命也难以生存。如今的火星就是这个样子,只有部分磁场,大气稀薄,十分寒冷。  但是,曾经的火星可不是如今这般。  很久很久以前,大约35亿年前,火星也曾有着厚厚的大气层,如同裹着棉衣,
期刊
冥王星命途多舛,2006年,它从太阳系九大行星之一被降级为矮行星,而现在,科学家发现,冥王星很可能是颗巨型彗星。  尽管冥王星早已被降级为矮行星,但科学家仍对它兴趣不减,2015年,美國宇航局发射的“新视野号”探测器成功造访冥王星,拍下了这颗星球的图景,收集了它的数据。  最近,美国研究院的科学家结合了“新视野号”收集的数据以及欧洲航天局探测67P/楚留莫夫-格拉希门克彗星的“罗塞塔号”所收集的数
期刊
新陈代谢是生命的基本特征之一,有机体通过它获得生命活动所需要的能量、排除废物。以往科学家认为,新陈代谢只发生在细胞里,与其有关的一系列生化反应,也只有在酶的催化作用下才能完成。  可是最近,科学家发现,某些新陈代谢过程即使离开细胞,离开酶的帮助,在相对简单的条件下也能发生——当然,这里的“新陈代谢”已经突破了传统课本上“生物体与外界环境之间的物质和能量交换,以及生物体内物质和能量的转变过程”的定义
期刊