论文部分内容阅读
为了解决背景差算法在前景提取的过程中对光照变化的敏感性和提取的前景中容易产生椒盐噪声的问题,提出了一种基于耦合隐马尔科夫模型的背景差方法。对像素的马尔科夫性进行了分析,并对像素建立耦合隐马尔科夫模型,通过时间统计的方法统计了像素隐含状态的转移概率,通过实验的方法选取了合适的前景标准差和背景标准差,利用Viterbi算法来求解耦合隐马尔科夫模型的最优隐含状态问题,运用该算法对一段交通监控视频进行分析,表明了该算法能够有效的抑制光照变化的影响,并且能够在一定程度上抑制前景噪声的出现。