论文部分内容阅读
Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-performance DUV LEDs.To realize such optoelectronic devices,the modulation of the bandgap is required.This has been demonstrated by the developments of Mg_xZn_(1-x)O and Be_xZn_(1-x)O alloys for the larger bandgap materials.Many efforts have been made to obtain DUV LEDs,and promising successes have been achieved continuously.In this article,we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.
Deep-ultraviolet (DUV) light-emitting devices (LEDs) have a variety of potential applications. Zinc-oxide-based materials, which have wide band gap and large exciton binding energy, have potential applications in high-performance DUV LEDs. optoelectronic devices, the modulation of the bandgap is required. This has been demonstrated by the developments of Mg_xZn_ (1-x) O and Be_xZn_ (1-x) O alloys for the larger bandgap materials. Various efforts have been made to obtain DUV LEDs , and promising successes have been achieved continuously. In this article, we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.