论文部分内容阅读
尽管朴素贝叶斯简单而且在很多数据集上效果很好,但是其属性独立性假设在现实世界中并不总是成立的,当这一假设不成立时,其结果很差。通过分析和研究,提出了一种放宽这种独立性假设的新算法——懒惰学习双层朴素贝叶斯分类器L^2DLNB,该算法使用基于条件互信息的懒惰学习方法,在求不同类标的似然度时,使用不同的属性依赖关系,从而能够更准确地计算出各类标似然度。实验结果表明此算法在一些数据集上取得了更好的分类精度。