论文部分内容阅读
针对动态最近邻聚类算法因中心点选取不当以及隐含层节点较少时,通近效果不理想的问题,提出运用改进的动态最近邻聚类算法构造RBF神经网络( IDARBF神经网络),对传感器输出特性进行校正,有效地克服了原算法存在的问题;实验表明,IDARBF神经网络具有更好的非线性校正能力,运用改进的动态最近邻聚类算法处理后,传感器性能大幅度改善,精度更高,暗伤检侧合格率为100,检测效率128个/min.