论文部分内容阅读
高考数学复习中的恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。恒成立问题在解题过程中大致可分为以下几种类型:⑴一次函数型;⑵二次函数型;⑶变量分离型;⑷根据函数的奇偶性、周期性等性质;⑸直接根据函数的图象。
一、一次函数型
分析:在不等式中出现了两个字母:x及p,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将p视作自变量,则上述问题即可转化为在[-2,2]内关于p的一次函数大于0恒成立的问题。
二、二次函数型
三、分离变量型
若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。
注:注意到题目中出现了sinx及cos2x,而cos2x=1-2sin2x,故若把sinx换元成t,则可把原不等式转化成关于t的二次函数类型。
四、根据函数的奇偶性、周期性等性质
五、直接根据图象判断
一、一次函数型
分析:在不等式中出现了两个字母:x及p,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将p视作自变量,则上述问题即可转化为在[-2,2]内关于p的一次函数大于0恒成立的问题。
二、二次函数型
三、分离变量型
若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。
注:注意到题目中出现了sinx及cos2x,而cos2x=1-2sin2x,故若把sinx换元成t,则可把原不等式转化成关于t的二次函数类型。
四、根据函数的奇偶性、周期性等性质
五、直接根据图象判断