论文部分内容阅读
针对风电机组运行工况复杂多变,难以实现故障特征提取和预警指标量化的特点,提出基于k邻近度异常检测技术的风电机组故障预警方法:首先利用阶比重采样技术将时域非平稳信号转换为角域的平稳或准平稳信号;其次构建出新量纲一幅域特征值,提取阶比重采样角域信号早期故障特征;最后将振动角域序列映射成多维特征向量,通过基于k邻近度的异常点检测技术挖掘机组潜在异常信息,实现机组的早期故障预警。试验仿真验证了该方法的有效性。