论文部分内容阅读
对任意的正整数n,著名的伪Smarandache无平方因子函数Zw(n)定义为最小的正整数m使得n|mn,利用初等方法以及伪Smarandache无平方因子函数Zw(n)和Euler函数φ(n)的性质,研究了方程Zw(φ(n))=φ(Zw(n))的可解性,证明了该方程有无穷多个正整数解。同时讨论了方程Zw(n)+φ(n)=2n的可解性,并求出了该方程的正整数解为n=1。