论文部分内容阅读
针对能源复杂系统样本数量有限、变量维数高、偶合关系复杂等问题,提出了一种组合聚类算法和最优核v-支持向量回归机SVR融合的方法。该方法采用SOM自组织映射神经网络和K-means组合的聚类算法对初始样本集合进行聚类,构成不同核函数的子支持向量回归机SVR模型,再用均方误差标准(MSE)和小误差概率对其各核函数进行优选,得到最优核函数的v-支持向量回归机SVR模型。仿真结果表明,采用这种方法进行能源供需预测是有效的,其精度优于常规的支持向量回归建模方法。