基于可控性的城市轨道交通客流控制车站识别方法

来源 :交通运输系统工程与信息 | 被引量 : 0次 | 上传用户:lkstudybitcc2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为进一步拓展可控性理论在城市轨道交通客流控制领域的应用,首先根据相邻车站间进出站客流和断面客流的关系,论证城市轨道交通客流网络为线性时不变系统,证明可控性理论在城市轨道交通网络上的适用性.基于严格可控性框架和滞留人数为核心的子网生成策略,得到客流控制车站的识别方法.进一步地,引入机器学习领域的相关评价指标评估该方法的效果.研究结果表明:平峰时段北京市城市轨道交通网络的可控性为0.043,意味着该时段的网络状态较为稳定,无需采取客流控制措施;高峰时段,识别方案在拥堵生成到消散的过程中,更加侧重于对线网中心车站的控制.通过识别方法得到的客流控制方案与实际客流控制方案的吻合度最高可达70%.当两种方案控制车站的数量相同时,识别方法得到的客流控制方案更加侧重于对城市西部和中心区域的站点进行控制.
其他文献
以2-氯-4-甲硫基-3-甲基苯乙酮(3)为原料,在钨酸钠催化条件下,经过氧化氢氧化得到2-氯-4-甲磺酰基-3-甲基苯乙酮(2),优化条件下收率达98.31%。2与次氯酸钠进行氯仿反应得到2-氯-4-甲磺酰基-3-甲基苯甲酸(1),优化条件下收率达95.25%。两步收率93.64%。化合物1、2、3均经氢谱确认结构。该制备方法清洁高效、收率较高、成本较低,工业化生产前景广阔。
选区激光熔化和电子束选区熔化增材制造是较理想的先进高能束增材制造技术。选区激光熔化和电子束选区熔化制备钛铝合金的组织细小,力学性能明显优于铸造合金的,成形后通过合理的热处理工艺,合金能获得良好的高温抗蠕变性能和延展性。高能束增材制造技术很好地解决了传统钛铝合金构件成形问题。综述了钛铝预合金粉末的制备工艺、选区激光熔化和电子束选区熔化技术的工艺和应用以及钛铝合金的组织和性能的研究进展,指出了未来在高能束增材制造钛铝合金方面的研究方向。
固溶与冷轧处理后的Inconel600合金管经多次冷拉拔后出现纵向开裂,从显微组织、非金属夹杂物、开裂形貌、力学性能、工艺性能、固溶处理等方面研究了Inconel600合金管开裂的原因。结果表明:Inconel600合金管中氮含量较高,在熔炼过程中形成了较多氧化物和氮化物,在冷拉拔前的冷轧过程中氧化物和氮化物呈链状沿轧制方向分布,尺寸较大的链状夹杂物破坏了基体的均匀连续性,在反复拉拔过程中应力在夹杂物处集中,导致微裂纹在此处萌生并扩展,最终导致合金管的纵向开裂。
采用顶空气相色谱法,建立了一种同时测定劳拉替尼原料药中乙醚、二氯甲烷、乙酸乙酯、三乙胺、1,4-二氧六环、甲苯和N,N-二甲基甲酰胺七种有机溶剂残留量的方法。实验结果表明二甲亚砜空白无干扰,七种待测有机残留溶剂R值均大于10,方法分离度好,准确度和精密度高,适用于劳拉替尼原料药工艺生产中七种有机溶剂残留的同时测定。
某公司生产的材料为具有铝硅镀层的22MnB5热冲压成形钢的汽车加强板在总装前发生开裂,采用断口形貌、显微组织观察以及化学成分、硬度测试等方法对其失效原因进行了分析。结果表明:该失效加强板的断裂方式为韧性加脆性的混合断裂;激光剪边落料时拐角半径较小,导致裂纹在剪边边缘萌生,运输过程中在冲击载荷作用下,裂纹沿未进行激光剪边的弯曲变形区域快速扩展;增大拐角处的半径,同时冲压成形后对加强板进行全面的激光剪边,发现总装前加强板镀层上的压痕变浅,未发生开裂。
以五硫化二磷为起始原材料,经醇解、催化条件下氯化得到高品质O,O-二甲基硫代磷酰氯。优化条件下,产品含量达99%,总收率达80%。该方法无需碱解、通氯量少、废水量少。适合于工业化生产。
以氮甲基哌嗪为原料,经对硝基苯甲酰氯酰化和硝基Fe粉还原两步反应合成了医药中间体4-[(4-甲基-1-哌嗪基)羰基]苯胺,并通过单因素实验优化合成工艺.酰化反应:溶剂为CH2Cl2,缚
采用溶剂热合成法合成了八种Mofs光催化材料。以La、Zr、Fe、Zn为金属中心,对苯二甲酸(H2BDC)、2-氨基对苯二甲酸(H2ATA)为有机配体。通过XRD、SEM、TEM、Uv-vis DRS、FTIR、莫特肖特基测试对光催化剂进行表征,考察了光催化剂的组成、晶型、形貌、禁带宽度、元素含量、氧化还原电势等性能,考察了可见光和紫外光辐照下光催化剂对苯酚的光催化氧化性能。结果表明,使用10 mg的H2ATA-La在可见光照下降解20 mg/L的苯酚溶液,8 h时降解率达97.45%。
连接是装配式混凝土结构最关键的环节.文中在分析国内外相关资料的基础上,就装配式混凝土结构连接技术研究现状进行了概述.
以苯并[1,2-b:4,5-b’]二噻吩-4,8-二酮和3-(2-癸基十四烷基)噻吩为原料,通过数步反应高效合成了三种目标小分子受体BDT-2H、BDT-2F和BDT-2Cl。三种小分子受体具有依次红移的吸收光谱,光学带隙分别为1.72、1.70、1.65 eV,HOMO和LUMO能级也呈现出依次降低的趋势。因此,三种小分子受体分别与聚合物给体PBDB-T共混制备的有机太阳能电池具有依次降低的开路电压(0.99、0.88、0.80 V)和逐步提高的短路电流(6.74、11.63、15.63 mA·cm-2