论文部分内容阅读
目前国内钢轨探伤车检测系统都带有自动伤损识别功能,但由于采用了基于既有规则的简单逻辑判断方法,其自动识别的准确率不高,误报较多,伤损漏报的现象时有发生.针对该问题,根据钢轨探伤车所检测数据的特点,提出了基于深度学习与支持向量机的钢轨伤损智能识别系统技术方案;采用深度可分离卷积与选择性搜索相结合的方法进行目标定位;基于人工构建的多维特征,采用支持向量机方式进行伤损图像分类;并通过使用实际线路所测数据中的人工标注样本进行测试,验证了方法的有效性.测试结果表明,该系统在各项技术指标上均表现优异,伤损检出率达到99.8%,误报率降为12%,分类准确率达到95%以上.