论文部分内容阅读
为提高图像拼接时的配准速度和精度,针对鲁棒性模型估计问题,提出一种基于行列式点过程的改进RANSAC算法(Random Sample Consensus).该方法利用行列式点过程抽样法的全局负相关特性对匹配的特征点进行建模,实现抽样点的均匀化和分散化,剔除一些错误匹配点.用行列式点过程抽取的点集作为RANSAC算法的输入来求取变换矩阵.实验结果表明:该算法相对于传统的RANSAC算法,能够保持较高的精度和鲁棒性,减少传统RANSAC算法迭代次数,显著提升图像自动拼接的计算效率.