论文部分内容阅读
Euler—Lagrange方程是多体系统动力学的基本方程之一,是高指标的强非线性微分代数方程组。利用零空间方法对Euler—Lagrange方程作简化处理,然后利用高精度谱积分对得到的微分代数方程组作数值离散,形成配置离散格式。针对高阶微分代数方程的离散方程组的病态问题,采用预条件技术改善了方程组的求解条件,然后利用Newton—Krylov方法迭代求解。这种求解技术可以得到任意阶精度且A-稳定算法,并且采用预条件技巧极大的降低了计算的复杂性。