论文部分内容阅读
The compressive creep behavior at 1200~1400℃ of an in-situ synt hesized MoSi2-30%SiC (volume fraction) composite and a traditional PM MoSi2 -30%SiC (volume fraction) composite is investigated. The creep rate of the in -situ synthesized MoSi2-30%SiC (volume fraction) composite is about 10- 7s-1 under stress of 60~120MPa, and significantly lower than that made by PM method above 1300℃. The reason is that the interface be tween SiC particle and MoSi2 matrix in in-situ synthesized SiCp/MoSi2 is of direct atomic bonding without any amorphous glassy phase, such as SiO2 stru cture. Creep deformation occurs primarily by dislocation motion and the dislocat ions have Burgers vectors of the ty pe of 〈110〉 and 〈100〉.