论文部分内容阅读
基于计算机视觉技术,针对公路隧道病害进行检测与识别,提出视频数据的预处理方法.使用全卷积网络(FCN)模型识别病害的类别和位置,融合不同的上采样结果使最终结果更加精细,结合马尔可夫随机场(MRF)增强FCN模型的空间一致性.实验结果表明:该方法可解决数据冗余、镜头畸变及样本不均衡等问题;该方法在上海市虹梅南路隧道中的应用结果验证其准确度与可靠性.