论文部分内容阅读
Caldecrin was originally isolated from the pancreas as afactor that reduced serum calcium levels. This secreted serine protease has chymotrypsin-like activity and is also known as chymotrypsin C; it belongs to the elastase family. Although intravenous administration of caldecrin decreases the serum calcium concentration even when its protease activity is blocked,this effect does require cleavage of caldecrin’s pro-peptide by trypsin,converting it to the mature enzyme. Ectopic intramuscular expression of caldecrin prevented bone resorption in ovariectomized mice. Caldecrin inhibited parathyroid hormone-stimulated calcium release from fetal mouse long bone organ cultures. Furthermore,caldecrin suppressed the formation of osteoclasts from bone marrow cells by inhibiting the receptor activator of nuclear factor-k B ligand(RANKL)-stimulated phospholipase Cγ-calcium oscillation-calcineurinnuclear factor of activated T-cells,cytoplasmic 1 pathway. Caldecrin also suppressed the bone resorption activity of mature osteoclasts by preventing RANKL-stimulated Src activation,calcium entry,and actin ring formation. In vivo and in vitro studies have indicated that caldecrin is a unique multifunctional protease with anti-osteoclastogenic activities that are distinct from its protease activity. Caldecrin might be a potential therapeutic target for the treatment of osteolytic diseases such as osteoporosis and osteoarthritis. This mini-review describes caldecrin’s historical background and its mechanisms of action.
This secreted serine protease has chymotrypsin-like activity and is also known as chymotrypsin C; it belongs to the elastase family. Although intravenous administration of caldecrin decreases the serum calcium concentration even when its protease activity is blocked, this effect does require cleavage of caldecrin’s pro-peptide by trypsin, converting it to the mature enzyme. Ectopic intramuscular expression of caldecrin prevented bone resorption in ovariectomized mice. long bone organ cultures. Furthermore, caldecrin suppressed the formation of osteoclasts from bone marrow cells by inhibiting the receptor activator of nuclear factor-k B ligand (RANKL) -stimulated phospholipase Cγ-calcium oscillation-calcineurinuclear factor of activated T-cells, cytoplasmic 1 pathway. Caldecrin also suppressed the bone resorptio n activity of mature osteoclasts by preventing RANKL-stimulated Src activation, calcium entry, and actin ring formation. In vivo and in vitro studies have indicated that caldecrin is a unique multifunctional protease with anti-osteoclastogenic activities that are distinct from its protease activity. Caldecrin might be a potential therapeutic target for the treatment of osteolytic diseases such as osteoporosis and osteoarthritis. This mini-review describes caldecrin’s historical background and its mechanisms of action.